BAYSWATER MONTHLY DATA SUMMARY AUGUST 2016

LICENCE NO	779
LICENCE HOLDER	AGL Macquarie
REPORTING PERIOD	AUGUST 2016

A1 Licence Holder

Licence Number 779

Licence Holder AGL Macquarie

Trading Name (if applicable)

ABN 18 402 904 344

A2 Premises to which Licence Applies (if applicable)

Common Name (if any) BAYSWATER POWER STATION

Premises NEW ENGLAND HIGHWAY MUSWELLBROOK NSW 2333

A3 Activities to which Licence Applies

Electricity Generation

A4 Other Activities (if applicable) Crushing, Grinding or Separating Works Aircraft (helicopter) facilities

Crushing, Grinding or Separating Works

Sewage Treatment Systems

Chemical Storage Facilities

Aircraft (helicopter) facilities

A5 Fee-Based Activity Classifications

Note that the fee based activity classification is used t	o calculate the administrative fee.	
Fee-based activity	Activity scale	Unit of measure
Generation of electrical power from coal	> 4,000.00	Gwh generated
Chemical Storage	> 100	Tonnes Generated or Stored
Coal Works	> 5000000	Tonnes handled

Discharge & Monitoring Point 1

Discharge to waters

Effluent quality and volume monitoring, Discharge from main station oil separator hoBWing basin and Treated Process Water Pond to Tinkers Creek, shown as "EPA ID No. 1" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
AUGUST 2016	11/09/2016	Oil and Grease	milligrams per litre	Fortnightly	5	<5	2.5	<5	10 mg/L
AUGUST 2016	11/09/2016	Total suspended solids	milligrams per litre	Fortnightly	5	2.0	4.2	6.0	20 mg/L
AUGUST 2016	11/09/2016	Volume discharge	kilolitres per week	Weekly during discharge	4	0	9,591	11,206	36,400 kL
Comments:									

Discharge & Monitoring Point 7

Discharge to waters

Effluent quality and volume monitoring, Discharge from cooling towers to Tinkers Creek, shown as "EPA ID No. 7" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
AUGUST 2016	11/09/2016	Conductivity	uS/cm	Weekly	5	2460.0	2568.0	2630.0	4500 uS/cm
AUGUST 2016	11/09/2016	рН	pH Units	Weekly	5	7.9	8.0	8.2	6.5 - 8.5
AUGUST 2016	11/09/2016	Volume discharge	Megalitres per month	Weekly during discharge	26		321.2		840 ML
Comments:									

Discharge & Monitoring Point 8

Discharge to waters

Discharge & monitoring point under the Hunter River Salinity Trading Scheme, Discharge pipe from Lake Liddel dam wall, shown as "EPA ID No. 8" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
AUGUST 2016	11/09/2016	Conductivity	uS/cm	Continuous during disharge	3	2130.0	2213.3	2280.0	•
AUGUST 2016	11/09/2016	рН	pH Units	Daily during discharge	3	8.4	8.4	8.4	6.5 - 8.5
AUGUST 2016	11/09/2016	Total suspended solids	milligrams per litre	Monthly	3	2.0	4.7	7.0	30 mg/L
AUGUST 2016	11/09/2016	Volume discharge	Megalitres per day	Daily during discharge	2	0	22.7	655.2	700 ML
Comments:	Results obtained from monthly sampling event and HRSTS discharge sampling								

Discharge & Monitoring Point 17

Discharge to waters

Ravensworth void. Inlet point located on the Void 4 pontoon pump system

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
AUGUST 2016	11/09/2016	Conductivity	uS/cm	Continuous during disharge	1	6750.0	6750.0	6750.0	-
AUGUST 2016	11/09/2016	рН	pH Units	Daily during discharge	1	8.6	8.6	8.6	6.5 - 9.5
AUGUST 2016	11/09/2016	Total suspended solids	milligrams per litre	Monthly	1	0.5	2.5	<5	30 mg/L
AUGUST 2016	11/09/2016	Boron	milligrams per litre	Weekly duirng discharge	1	2.5	2.5	2.5	0.81
AUGUST 2016	11/09/2016	Cadmium	milligrams per litre	Weekly duirng discharge	1	<0.0001	0.0	<0.0001	0.0003
AUGUST 2016	11/09/2016	Copper	milligrams per litre	Weekly duirng discharge	1	0.0	0.0	0.0	0.001
AUGUST 2016	11/09/2016	Iron	milligrams per litre	Weekly duirng discharge	1	<0.05	0.0	<0.05	0.27
AUGUST 2016	11/09/2016	Molybdenum	milligrams per litre	Weekly duirng discharge	1	0.3	0.3	0.3	0.29
AUGUST 2016	11/09/2016	Nickel	milligrams per litre	Weekly duirng discharge	1	0.0	0.0	0.0	0.19
AUGUST 2016	11/09/2016	Silver	milligrams per litre	Weekly duirng discharge	1	<0.0001	0.0	<0.0001	0.0005
AUGUST 2016	11/09/2016	Volume discharge	Megalitres per day	Daily during discharge	-	-	-	-	20 ML
Comments:	HRSTS Discharge	did not occur during this re	eporting period. Results	were obtained from routine	monthly sampling				

Discharge & Monitoring Point 10

Discharge to air

Air emission monitoring, Boiler 1 stack emissions, shown as "EPA ID No. 10" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
AUGUST 2016	11/09/2016		parts per million				183.2	318.1	465.5	700 ppm
AUGUST 2016	11/09/2016	Nitrogen Oxides	milligrams per cubic metre	Continuous	One hour	100.0%	376.1	653.0	955.4	1500 mg/m ³
AUGUST 2016	11/09/2016	Sulphur dioxide	parts per million	Continuous	One hour	100.0%	271.9	337.7	401.1	600 ppm
AUGUST 2016	11/09/2016	Sulpriur dioxide	milligrams per cubic metre	Continuous	One nour	100.0%	777.1	965.1	1146.3	4
AUGUST 2016	11/09/2016	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	3.9%	6.7%	12.6%	20%
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 1 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m³
Oct-15	30/11/2015	Cadmium	milligrams per cubic metre	1	1	0.0000	1.0
Oct-15	30/11/2015	Carbon monoxide	ppm	1	1	23	
Oct-15	30/11/2015	Chlorine	milligrams per cubic metre	1	1	0.0	200
Oct-15	30/11/2015	Copper	milligrams per cubic metre	1	1	0.0005	
Oct-15	30/11/2015	Hazardous substances (Metals)	milligrams per cubic metre	1	1	0.01	5
Oct-15	30/11/2015	Hydrogen chloride	milligrams per cubic metre	1	1	16.0	100
Oct-15	30/11/2015	Mercury	milligrams per cubic metre	1	1	0.00160	1.0
Oct-15	30/11/2015	Nitrogen oxides	milligrams per cubic metre	1	1	1	1500
Oct-15	30/11/2015	Solid particles	milligrams per cubic metre	1	1	9.5	100
Oct-15	30/11/2015	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	8.90	100
Oct-15	30/11/2015	Sulphur dioxide	milligrams per cubic metre	1	1	1100	
Oct-15	30/11/2015	Total fluoride	milligrams per cubic metre	1	1	9.3	50
comments:	Monitoring of emiss October 2015.	sion from each of the 4 bo	ilers for the substances i	n this table is required ann	ually. This table contai	ns the results from B	piler 1 tested on 27

Discharge & Monitoring Point 11

Discharge to air

Air emission monitoring, Boiler 2 stack emissions, shown as "EPA ID No. 11" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
AUGUST 2016	11/09/2016	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	2.7%	6.9%	13.1%	20%
Comments:										

Annual monitoring of discharges to air
Air emission monitoring, Boiler 2 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m ³		
Jul-15	17/08/2015	Cadmium	milligrams per cubic metre	1	1	0.0001	1.0		
Jul-15	17/08/2015	Carbon monoxide	ppm	1	1	27			
Jul-15	17/08/2015	Chlorine	milligrams per cubic metre	1	1	0.0	200		
Jul-15	17/08/2015	Copper	milligrams per cubic metre	1	1	0.0011			
Jul-15	17/08/2015	Hazardous substances (Metals)	milligrams per cubic metre	1	1	0.04	5		
Jul-15	17/08/2015	Hydrogen chloride	milligrams per cubic metre	1	1	16.0	100		
Jul-15	17/08/2015	Mercury	milligrams per cubic metre	1	1	0.00140	1.0		
Jul-15	17/08/2015	Nitrogen oxides	milligrams per cubic metre	1	1	1	1500		
Jul-15	17/08/2015	Solid particles	milligrams per cubic metre	1	1	8.2	100		
Jul-15	17/08/2015	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	55.00	100		
Jul-15	17/08/2015	Sulphur dioxide	milligrams per cubic metre	1	1	810			
Jul-15	17/08/2015	Total fluoride	milligrams per cubic metre	1	1	6.7	50		
Comments:	Monitoring of emission from each of the 4 boilers for the substances in this table is required annually. This table contains the results from Boiler 2 tested on 16 July 2015.								

Discharge & Monitoring Point 12

Discharge to air

Air emission monitoring, Boiler 3 stack emissions, shown as "EPA ID No. 12" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
AUGUST 2016	11/09/2016	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	2.3%	8.5%	15.1%	20%
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 3 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m³		
Jul-15	17/08/2015	Cadmium	milligrams per cubic metre	1	1	0.0000	1.0		
Jul-15	17/08/2015	Carbon monoxide	ppm	1	1	5			
Jul-15	17/08/2015	Chlorine	milligrams per cubic metre	1	1	0.0	200		
Jul-15	17/08/2015	Copper	milligrams per cubic metre	1	1	0.0011			
Jul-15	17/08/2015	Hazardous substances (Metals)	milligrams per cubic metre	1	1	0.01	5		
Jul-15	17/08/2015	Hydrogen chloride	milligrams per cubic metre	1	1	12.0	100		
Jul-15	17/08/2015	Mercury	milligrams per cubic metre	1	1	0.00170	1.0		
Jul-15	17/08/2015	Nitrogen oxides	milligrams per cubic metre	1	1	1	1500		
Jul-15	17/08/2015	Solid particles	milligrams per cubic metre	1	1	20.0	100		
Jul-15	17/08/2015	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	37.00	100		
Jul-15	17/08/2015	Sulphur dioxide	milligrams per cubic metre	1	1	960			
Jul-15	17/08/2015	Total fluoride	milligrams per cubic metre	1	1	13.0	50		
Comments:	Monitoring of emission from each of the 4 boilers for the substances in this table is required annually. This table contains the results from Boiler 3 tested on 14 July 2015.								

Licence 779

Discharge & Monitoring Point 13

Discharge to air

Air emission monitoring, Boiler 4 stack emissions, shown as "EPA ID No. 12" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
AUGUST 2016	11/09/2016	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	3.4%	6.1%	13.2%	20%
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 4 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m³
May-15	7/07/2015	Cadmium	milligrams per cubic metre	1	1	0.0000	1.0
May-15	7/07/2015	Carbon monoxide	ppm	1	1	<0.0029	
May-15	7/07/2015	Chlorine	milligrams per cubic metre	1	1	0.0	200
May-15	7/07/2015	Copper	milligrams per cubic metre	1	1	0.0018	
May-15	7/07/2015	Hazardous substances (Metals)	milligrams per cubic metre	1	1	0.01	5
May-15	7/07/2015	Hydrogen chloride	milligrams per cubic metre	1	1	22.0	100
May-15	7/07/2015	Mercury	milligrams per cubic metre	1	1	0.00110	1.0
May-15	7/07/2015	Nitrogen oxides	milligrams per cubic metre	1	1	1	1500
May-15	7/07/2015	Solid particles	milligrams per cubic metre	1	1	17.0	100
May-15	7/07/2015	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	9.30	100
May-15	7/07/2015	Sulphur dioxide	milligrams per cubic metre	1	1	930	
May-15	7/07/2015	Total fluoride	milligrams per cubic metre	1	1	22.0	50
Comments:	Monitoring of emiss 2015.	sion from each of the 4 bo	ilers for the substances i	n this table is required ann	ually. This table contai	ns the results from B	oiler 4 tested on 21 May

Licence 779

Details of Non-Compliance with Licence Conditions
icence condition number not complied with
Condition L1.1
Summary of particulars of the non-compliance (NO MORE THAN 50 WORDS)
eak from the Ravensworth return water line resulting in return water being captured in a neighbouring mine water structure
f required, further details on particulars of non-compliance
required, futurer details on particulars on non-compliantee
Date(s) when the non-compliance occurred, if applicable
5-Aug-16
f relevant, precise location where the non-compliance occurred (attach a map or diagram)
f applicable, registration numbers of any vehicles or the chassis number of any mobile plant involved in the non-compliance
Cause of non-compliance
Failure of an air relief valve on the Ravensworth "A" return water line
Action taken or that will be taken to mitigate any adverse effects of the non-compliance
Pumping ceased immediately and the area was inspected. Water samples were collected and the valve repaired.
The state of the s
Action taken or that will be taken to prevent a recurrence of the non-compliance
nvestigation carried out with preventative actions being implemented