

2021-2022 Groundwater and Surface Water Monitoring Report

Camden Gas Project

Prepared for AGL Upstream Investments Pty Ltd

September 2022

2021-2022 Groundwater and Surface Water Monitoring Report

Camden Gas Project

AGL Upstream Investments Pty Ltd

E220575 RP1

September 2022

Version	Date	Prepared by	Approved by	Comments
1	26 August 2022	Kaitlyn Brodie	Nicola Fry	Draft
2	13 September 2022	Kaitlyn Brodie	Nicola Fry	Final

Approved by

C'2

Nicola Fry Associate Hydrogeologist 13 September 2022

Ground floor 20 Chandos Street St Leonards NSW 2065 PO Box 21 St Leonards NSW 1590

This report has been prepared in accordance with the brief provided by AGL Upstream Investments Pty Ltd and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of AGL Upstream Investments Pty Ltd and no responsibility will be taken for its use by other parties. AGL Upstream Investments Pty Ltd may, at its discretion, use the report to inform regulators and the public.

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Executive Summary

AGL Upstream Investments Pty Ltd (AGL) owns and operates the Camden Gas Project (CGP) located in the Macarthur region, 65 kilometres (km) southwest of Sydney, NSW. The CGP has been producing natural gas from coal seams for the Sydney region since 2001 and currently consists of 144 gas wells (of which, 61 were operational as of 30 June 2021). The target coal seams are the Bulli and Balgownie Coal Seams within the Illawarra Coal Measures at depths of approximately 550–700 metres below ground level (mbgl).

The 2021-2022 CGP groundwater monitoring network comprises two nested monitoring sites (seven monitoring bores) targeting the alluvium near the Nepean River, the Ashfield Shale, and the Hawkesbury Sandstone overlying the target coal seams: Menangle Park (monitored since June 2013) and Glenlee (monitored since February 2014). Groundwater levels have been recorded at six-hourly intervals and water quality data have been collected on a six-monthly basis during the monitoring year.

Previously, there was an additional nested monitoring site at Denham Court (RMB01, RMB02, RMB03, RMB04, monitored from 2011 to 2016) with four monitoring bores. All bores at the Denham Court site were decommissioned in October 2016 at the landowner's request, with the final water quality monitoring undertaken at this site in April 2016 and groundwater level data available until October 2016. The Denham Court site was located 12 km from the CGP and acted as a control or background monitoring location.

Surface water is monitored at one monitoring location along the Nepean River next to the Menangle Park site for both surface water quality and water level. River levels have been recorded at three-hourly intervals and water quality data have been collected on two occasions during the 2021/22 monitoring year.

This report presents an assessment of water level and water quality data from the groundwater monitoring network and from the Nepean River for the period up to 30 June 2022, with an emphasis on data obtained during the past 12 months.

The groundwater level in the Nepean River alluvium is shallow and shows a direct response to rainfall and flood events (when occurring). Groundwater levels are shallow (approximately 8 mbgl to 15 mbgl) and follow similar trends in each of the screened Hawkesbury Sandstone water bearing zones (defined as upper, middle, and lower). There is no apparent response to individual rainfall events over the monitoring period at the Glenlee site, while a clear response to rainfall events can be observed at the Menangle Park site. The recorded groundwater levels, during the 2021/22 monitoring year, were overall comparable to groundwater levels recorded during previous monitoring years and consistent with the climatic variations at the Menangle Park site. A slight downward trend in groundwater levels can be observed at the Glenlee site; this is interpreted to not necessarily be representative of true groundwater levels and responses and may be influenced by water chemistry changes and carbonate precipitation within the bore. More data is needed to determine the cause of the downward trend.

Groundwater sampled from the alluvium at the Menangle Park site is fresh to marginally brackish, and generally has low dissolved metal concentrations. Groundwater sampled from the Hawkesbury Sandstone is fresh to marginally brackish at the Menangle Park site, while brackish to slightly saline at the Glenlee site. Dissolved metal concentrations in the Hawkesbury Sandstone are generally low and minor detections of hydrocarbons were reported in the lower Hawkesbury Sandstone at the two monitoring sites. Dissolved methane was detected at all monitoring bores, although concentrations at the Menangle Park were comparable to the former control site at Denham Court (sampled in previous monitoring years). Low concentrations of dissolved ethane were reported at the Glenlee site, and toluene was detected at the Menangle Park lower Hawkesbury Sandstone monitoring bore.

Overall, groundwater quality during the 2021/22 monitoring year was generally comparable to that measured during previous monitoring years, except for GLMB03. GLMB03 was remediated in October 2021 to address changes in water quality, including increased pH, precipitation of calcium carbonate and lower sampling yields. The changes were associated with naturally occurring gases and attributed to natural causes.

Based on assessment of the available data, there are no observable impacts to groundwater levels or quality that could be attributable to the CSG operations. There is also no evidence of connectivity between the shallower monitored zones and the coal seams. This corroborates the conceptual model (Parsons Brinckerhoff 2011) indicating the presence of extensive and thick claystone formations (aquitards and aquicludes) between the Hawkesbury Sandstone and coal seams restricts upward depressurisation and impedes the vertical flow of groundwater.

TABLE OF CONTENTS

Exe	cutive	Summary	ES.1
1	Intro	duction	1
	1.1	Background	1
	1.2	Scope of works for the 2021/22 monitoring program	1
2	Site c	haracterisation	3
	2.1	Rainfall	3
	2.2	Surface hydrology	5
	2.3	Geological setting	5
	2.4	Hydrogeological setting	8
3	Moni	toring program	10
	3.1	Monitoring network	10
	3.2	Water level monitoring	12
	3.3	Water quality monitoring	12
4	Grou	ndwater levels	16
	4.1	Temporal trends	19
	4.2	Spatial trends in the Hawkesbury Sandstone	19
	4.3	Groundwater-surface water interactions	20
	4.4	Vertical gradients	20
5	Wate	r quality	21
	5.1	Groundwater quality	21
	5.2	Surface water quality	27
6	Discu	ssion and conclusions	29
Ref	erence	25	31
Glo	ssary		35
Abl	breviat	ions	40

Appendices

Appendix A	Groundwater hydrographs	A.1
Appendix B	Water quality summary table	B.1
Appendix C	Laboratory reports	C.1

Tables

Table 2.1	Summary of regional Permo-Triassic geological stratigraphy	6
Table 2.2	Hydrogeological units within the CGP area	8
Table 3.1	Groundwater monitoring bore details	10
Table 3.2	Summary of water level monitoring locations and data collection periods	12
Table 3.3	Groundwater quality program	13
Table 3.4	Analytical suite	14
Figures		
Figure 1.1	Groundwater and surface water monitoring locations Camden Gas Project	2
Figure 2.1	Cumulative deviation from annual mean rainfall	4
Figure 2.2	Monthly rainfall for the monitoring period 2011-2022	4
Figure 2.3	Surface geology	7
Figure 3.1	Nested groundwater monitoring bores at the Denham Court, Glenlee and Menangle Par	k
	sites	11
Figure 4.1	Groundwater levels at the Menangle Park site	17
Figure 4.2	Groundwater levels at the Glenlee site	18
Figure 5.1	EC time series for CGP monitoring bores and Nepean River sample	22
Figure 5.3	Major ion chemistry of groundwater for CGP monitoring bores (2021/22 monitoring yea	r) 23
Figure 5.4	Major ion chemistry of groundwater for CGP monitoring bores (2020/21 monitoring yea	r) 24

- Figure 5.5Dissolved metal concentrations in groundwater for CGP monitoring bores (2021/22
monitoring year)25Figure 5.6Ammonia versus nitrate concentrations in groundwater for CGP monitoring bores (2021/22
monitoring year)26
- Figure 5.7Dissolved methane time series for CGP monitoring bores and Nepean River samples26

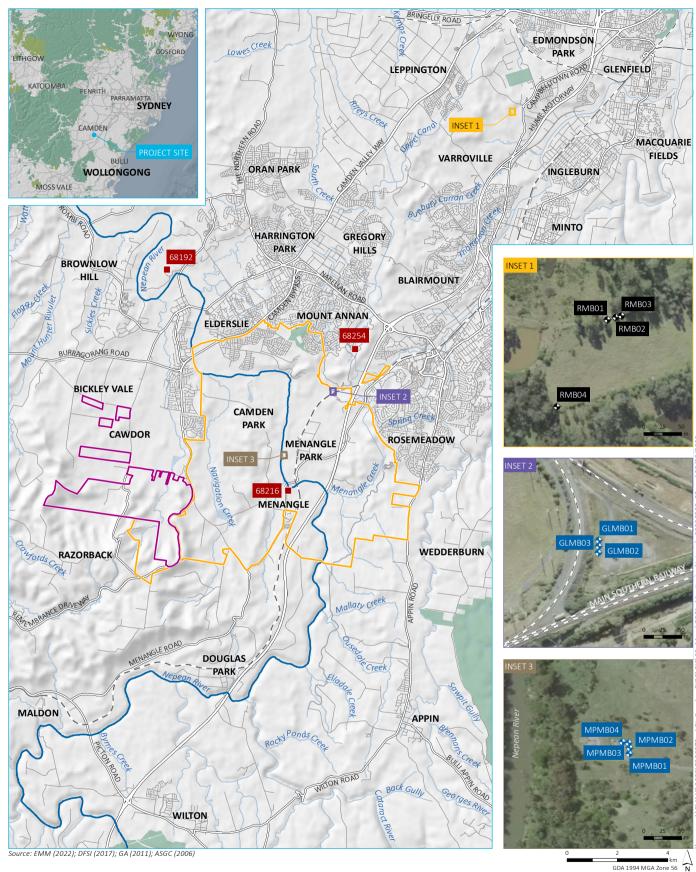
1 Introduction

1.1 Background

AGL Upstream Investments Pty Ltd (AGL) owns and operates the Camden Gas Project (CGP) located in the Macarthur region, 65 kilometres (km) southwest of Sydney, NSW. The CGP has been producing natural gas from coal seams for the Sydney region since 2001 and currently consists of 144 gas wells (of which, 44 were operational on 30 June 2022) within the Stage 1 and Stage 2 areas (Figure 1.1). The target coal seams are the Bulli and Balgownie Coal Seams within the Illawarra Coal Measures at depths of approximately 550–700 metres below ground level (mbgl).

EMM Consulting Pty Limited (EMM) was engaged by AGL to compile groundwater and surface water monitoring results collected between 1 July 2021 and 30 June 2022 (the 2021/22 monitoring year) and to analyse with reference to the CGP activities. Installation of a dedicated water monitoring network of 11 monitoring bores occurred between October 2011 and February 2014. The current groundwater monitoring network comprises seven dedicated monitoring bores in the alluvium, the Ashfield Shale, and the Hawkesbury Sandstone. The collection of groundwater level and groundwater quality data commenced in October 2011. Groundwater levels have been recorded at six-hourly intervals and, following one initial sample in November 2011, water quality data were collected on a quarterly basis between May 2013 and April 2015 and on a six-monthly basis from April 2015 onwards. In addition, one surface water monitoring location has been sampled for water quality on two occasions during the 2021/22 monitoring year.

This report contains an evaluation of the data obtained during the 2021/22 monitoring year, with comparison to the data obtained during the previous monitoring years (EMM 2021b, 2020b, 2019b, 2018b 2017b, and 2016; Parsons Brinckerhoff 2012, 2013a, 2014a, 2014b and 2015e).


Monitoring was undertaken at two sites within the CGP during the 2021/22 monitoring year: Menangle Park and Glenlee (Figure 1.1). During previous monitoring years there was an additional nested monitoring site at Denham Court (monitored from 2011 to 2016) with four monitoring bores (RMB01, RMB02, RMB03, RMB04). All bores at the Denham Court site were decommissioned in October 2016 at the landowners' request with the final water quality monitoring undertaken at this site in April 2016 and groundwater level data available until October 2016. Denham Court was located 12 km from the CGP and acted as a control and background monitoring location (Figure 1.1).

The objective of the ongoing groundwater monitoring program is to provide water levels and water quality attributes for each of the monitored groundwater systems of the region, in areas within (and previously in areas also distant from) the currently operating CGP.

1.2 Scope of works for the 2021/22 monitoring program

This report presents and interprets groundwater level and groundwater quality data collected since monitoring began at each of the established sites, with emphasis on the data obtained during the 2021/22 monitoring year. The scope of works was to:

- conduct groundwater monitoring, including six-hourly groundwater level measurements and two groundwater quality sampling events (November 2021 and April 2022) testing for field parameters, major cations and anions, dissolved metals, nutrients, dissolved methane and other hydrocarbons;
- conduct surface water quality sampling events (November 2021 and April 2022) at one location (the Nepean River near the Menangle Park site as shown on Figure 1.1);
- analyse and interpret water level and water quality results with reference to the conceptual model, where relevant; and
- establish whether there are any observable impacts from coal seam gas (CSG) activities within the shallow aquifers.

KEY

- 🔲 Camden Gas Project Stage 1
- Camden Gas Project Stage 2
- Nepean River
- BOM weather station
- Groundwater monitoring bore
- Decommissioned groundwater monitoring bore
- — Rail line
- ----- Major road
- Minor road
- Named watercourse
- Named waterbody
- NPWS reserve

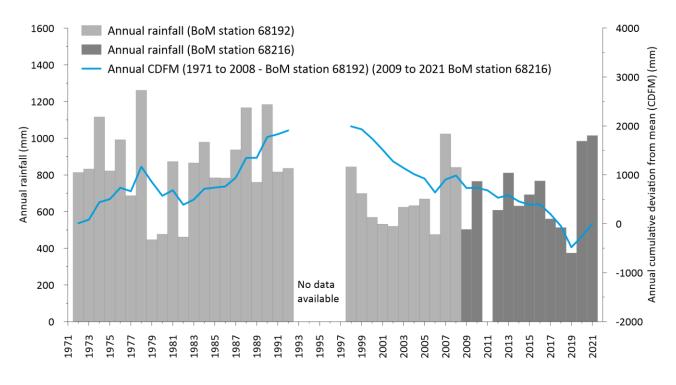
Groundwater monitoring locations

AGL Camden Gas Project 2021-2022 Groundwater Monitoring Report Figure 1.1

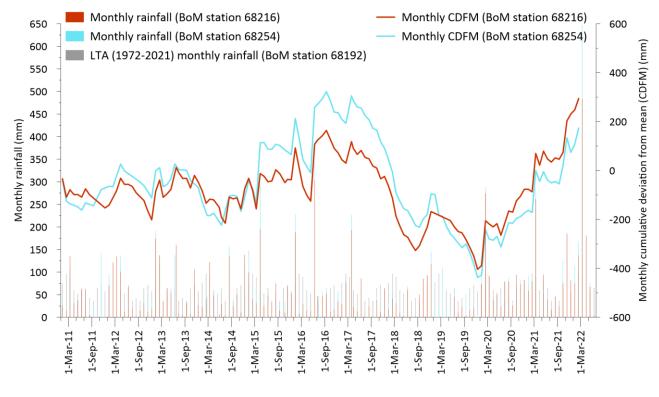
2 Site characterisation

2.1 Rainfall

The nearest Bureau of Meteorology (BoM) weather station with consistent historical climate measurements is located at Camden airport (BoM site number 68192), approximately 2.5 km northwest of the Stage 2 area (Figure 1.1). Mean temperatures at Camden airport range from 17.4°C in July to 29.7°C in January (based on records from 1971 to 2022). The average annual rainfall is 796.6 millimetres (mm) (based on records from 1972 to 2022). On average, September receives the least rain, with a mean rainfall of 38.1 mm, while March receives the most rain, with a mean rainfall of 105.1 mm (BoM 2022).


The long-term, annual cumulative deviation from mean (CDFM) rainfall for Camden airport is plotted in Figure 2.1 Annual rainfall data for BoM site number 68216 (located approximately 10 km southeast from the Camden airport 68192 station) is presented from 2009 onwards as recent rainfall records at Camden airport are incomplete. The long-term CDFM is generated by subtracting the long-term average annual rainfall for the recorded period from the actual annual rainfall and then accumulating these residuals over the assessment period. Periods of below average rainfall are represented as downward trending slopes while periods of above average rainfall are represented as upward trending slopes.

The cumulative deviation plot (Figure 2.1) shows a relatively wet period between 1972 and 1992, followed by a relatively dry period between 1998 and 2007. From 2007 to 2018, the rainfall was typically below the mean rainfall, showing a relatively dry period. Of these records, 2019 was the driest year, with climatic observations indicative of an unprecedented drought in NSW. Since 2020, rainfall has been above the long-term average, with the cumulative deviation plot indicating a wet period.


As monitoring bore sites are approximately 5 km apart, groundwater level data for each site have been compared with rainfall data from the closest BoM stations (Figure 1.1) as follows:

- Menangle Park: 68216 Menangle Bridge; and
- Glenlee: 68254 Mount Annan Botanic Garden.

The rainfall characteristics are broadly similar between these BoM stations during the monitoring period, as presented in Figure 2.2. Total monthly rainfall for the 2021/22 monitoring year indicates a wet period, with extreme rainfall events in early 2022. March 2022 was the wettest month, with significant floods observed during this month. The remainder of the monitoring year was also above the long-term average.

2.2 Surface hydrology

The CGP is located within two catchment areas: the Hawkesbury Nepean Catchment and the Sydney Metropolitan Catchment. The major surface hydrology features in the CGP are the Nepean River and its tributaries, which meander in a south to north direction within the project area; and the Georges River, which flows in a northerly direction, in the south-east of the project area.

Small farm dams are common in rural areas and provide water for stock, limited garden and irrigation purposes. Dams are replenished by rainfall and runoff, although some seepage flow through the weathered soil profiles occurs after long wet periods. Dams and seepage flows are not related to the regional groundwater systems. There are no known springs in the CGP area.

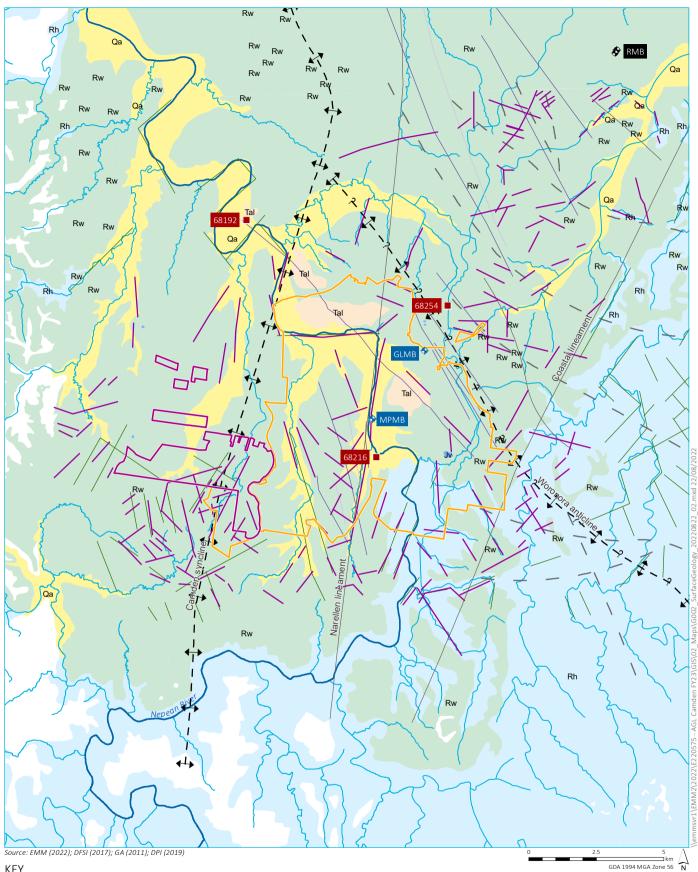
2.3 Geological setting

The CGP is part of the Southern Coalfield of the Sydney Geological Basin. The Basin is primarily a Permo-Triassic sedimentary rock sequence (Parkin 2002) and is underlain by undifferentiated sediments of Carboniferous and Devonian age. The stratigraphy of the CGP in the Camden-Campbelltown area is summarised in Table 2.1. The geology and structure of the CGP is shown on Figure 2.3.

The Illawarra Coal Measures is the economic sequence of interest for CSG development in the area, and consists of interbedded sandstone, shale and coal seams, with a thickness of approximately 300 m. The upper sections of the Permian Illawarra Coal Measures (Sydney Subgroup) contain the major coal seams: Bulli Coal Seam, Balgownie Coal Seam, Wongawilli Coal Seam, and Tongarra Coal Seam. The seams targeted for CSG production within the CGP are the Bulli and Balgownie coal seams, both of which are 2 m to 5 m thick within the CGP.

The Illawarra Coal Measures is overlain by Triassic sandstones, siltstones and claystones of the Narrabeen Group and the Hawkesbury Sandstone. Overlying the Hawkesbury Sandstone is the Triassic Wianamatta Group shales which comprise most of the surficial geology (where thin alluvial deposits are not present).

Structurally, the CGP area and surrounds are dominated by the north-northeast plunging Camden Syncline, which is a broad and gentle warp structure (Alder et al. 1991 and Bray et al. 2010). The Camden Syncline is bounded in the west and truncated in the south-west by the north-south trending Nepean Structural Zone, part of the Lapstone Structural Complex.


The CGP is relatively unaffected by major faulting apart from a set of NW-NNW trending faults associated with the Lapstone Monocline Structure (Alder et al. 1991 and Blevin et al. 2007). These faults have been identified from exploration and 2D seismic studies and they have been identified as high-angle, low to moderate displacement normal faults (Blevin et al. 2007). Many of these features intersect coal seams however very few, if any, affect the entire stratigraphic sequence and display no expression at surface.

Period	Group	Sub-group	Formation	Description	Average thickness (m) ¹
Quaternary		Alluvium	Quartz and lithic 'fluvial' sand, silt and clay.	<20	
Tertiary			Alluvium	High level alluvium.	
	Wianamatta Group		Bringelly Shale	Shale, carbonaceous claystone, laminate, lithic sandstone, rare coal.	80 (top eroded
			Minchinbury Shale	Fine to medium-grained lithic sandstone.	-
		Ashfield Shale ² Black to light grey shale and laminate (Bembrick et al. 1987).		Black to light grey shale and laminate (Bembrick et al. 1987).	-
	Mittagong For	mation		Dark grey to grey alternating beds of shale laminate, siltstone and quartzose sandstone (Alder et al. 1991).	11
	Hawkesbury S	Sandstone		Massive or thickly bedded quartzose sandstone with siltstone, claystone and grey shale lenses up to several metres thick (Bowman 1974; Moffitt 2000).	173
		Gosford	Newport Formation	Fine-grained sandstone (less than 3 m thick) interbedded with light to dark grey, fine-grained sandstones, siltstones and minor claystones (Bowman 1974).	35
Triassic		Sub-group	Garie Formation	Cream, massive, kaolinite-rich pelletal claystone, which grades upwards to grey, slightly carbonaceous claystone containing plant fossils at the base of the Newport Formation (Moffitt 2000).	8
			Bald Hill Claystone ²	Massive chocolate coloured and cream pelletal claystones and mudstones, and occasional fine-grained channel sand units (Moffitt 2000).	34
					251
			Stanwell Park Claystone ²	Stanwell Park Claystone ² Red-green-grey shale and quartz sandstone (Moffitt 1999).	
	Narrabeen Group		Scarborough Sandstone	gh Sandstone Quartz-lithic sandstone, pebbly in part (Moffitt 1999).	
			Wombarra Claystone ²	Grey shale and minor quartz-lithic sandstone (Moffitt 1999).	32
			Bulli Coal Seam		4
			Loddon Sandstone		12
		Sydney	Balmain Coal Member		24
Permian		Sub-group	Balgownie Coal Seam	Coal interbedded with shale, quartz-lithic sandstone, conglomerate, chert, torbanite seams and occasionally carbonaceous mudstone (Moffitt 2000).	2
			(Remaining Sydney Subgroup)		
		Cumb	perland Sub-group		
	Shoalhaven Group			Sandstone, siltstone, shale, polymictic conglomerate, claystone; rare tuff, carbonate, evaporate.	
Palaeozoic	Lachlan Fold	Belt		Intensely folded and faulted slates, phyllites, quartzite sandstones and minor limestones of Ordovician to Silurian age (Moffitt 2000).	

Summary of regional Permo-Triassic geological stratigraphy

202 – 202 Groundwater and Surface Water Monitoring Report Camden Gas Project

KEY

Camden Gas Project Stage 1
Camden Gas Project Stage 2
 Nepean River
 Watercourse

- ٠ Groundwater monitoring bore
- Decommissioned groundwater monitoring bore ¢

Structure

. Syncline

. Anticline

I

Certain fault (AGL Energy)

Possible fault (AGL Energy)

Fault (Geology 100k DPI / Mauger et al; Southern Coal Fields map)

Interpreted Fault (Geology 100k DPI / Mauger et al; Southern Coal Fields map)

Lineament (CSIRO 1:80,000 Landsat interpreted fracture analysis)

Lineaments (air photo interpreted; CSIRO)

BOM weather station 250k Geology

- Jv Basalt, dolerite & volcanic breccia
- Qa Quaternary alluvium
- Tal High level gravels
- Rw Bringelly Shale, Minchinbury Sandstone & Ashfield Shale
- Rh Hawkesbury Sandstone

AGL Camden Gas Project 2021-2022 Groundwater Monitoring Report Figure 2.3

Surface geology

2.4 Hydrogeological setting

The Southern Coalfield is located within the area covered by the Water Sharing Plan for the Greater Metropolitan Region Groundwater Sources. The CGP is located across two porous rock water sources – the Sydney Basin Nepean water source to the south and the Sydney Basin Central water source to the north (NOW 2011). The recognised hydrogeological units within the CGP are shown in Table 2.2.

Table 2.2 Hydrogeological units within the CGP area

Hydrogeological unit	Aquifer type
Alluvium	Unconfined aquifer
Ashfield Shale (Wianamatta Group)	Aquitard or unconfined/perched
Hawkesbury Sandstone	Unconfined/semi-confined aquifer
Bald Hill Claystone (Narrabeen Group)	Aquitard/aquiclude
Bulgo Sandstone (Narrabeen Group)	Confined aquifer
Stanwell Park Claystone (Narrabeen Group)	Aquitard/aquiclude
Scarborough Sandstone (Narrabeen Group)	Confined aquifer
Wombarra Claystone (Narrabeen Group)	Aquitard/aquiclude
Illawarra Coal Measures	Confined water bearing zones

Alluvium occurs along the floodplain of the Nepean River and its tributaries. Alluvial deposits are generally thin, discontinuous (except along the Nepean River) and relatively permeable. The unconfined groundwater systems within the alluvium are responsive to rainfall and stream flow and form a minor beneficial groundwater system. There are also small terrace areas of Tertiary alluvium within the CGP area that contain localised groundwater systems systems of variable quality (Figure 2.3).

The Ashfield Shale (which outcrops across the majority of the CGP) is generally of low permeability and yield; however small water bearing zones are sometimes present. Water is typically brackish to saline, especially in low relief areas of western Sydney (due to the marine depositional environment of the shales) (Old 1942). Average bore yields are 1.3 litres per second (L/s) (AGL 2013).

The Hawkesbury Sandstone and Narrabeen Group form part of an extensive generally semi-confined regional groundwater system within the Sydney Basin sequence. The Hawkesbury Sandstone is more widely exploited for groundwater than the overlying and underlying formations, being of generally higher yield, better water quality and either outcropping or buried to shallow depths over the basin. Groundwater flow within the Hawkesbury Sandstone and Narrabeen Group groundwater systems at a regional scale has a major horizontal component, due to the alternation of sheet and massive facies, with some vertical leakage. The Hawkesbury Sandstone and Narrabeen Group are characterised by dual porosity. The primary porosity is imparted by connected void space between sand grains and the secondary porosity is due to the interconnected rock defects such as joints, fractures, faults and bedding planes. Superior bore yield in the sandstone groundwater systems of the Hawkesbury Sandstone is often associated with major fractures or a high fracture zone density and yields of up to 40 L/s have been recorded in bores intercepting these zones within deformed areas of the Sydney Basin (McLean and Ross 2009). Typically, within the CGP area bore yields within the Hawkesbury Sandstone rarely exceed 2 L/s (SCA 2007 and Ross 2014). The Narrabeen Group aquifer is generally not used as a water source as it is considered poorer quality and lower permeability compared to the overlying Hawkesbury Sandstone groundwater systems (Madden 2009).

There is a lack of major fracturing and fault systems intersecting the Hawkesbury Sandstone within the CGP. Yields in the Hawkesbury Sandstone are highest and salinities are freshest south of the Nepean River due to the proximity to recharge areas. North of the Nepean River, the groundwater within the Hawkesbury Sandstone is characterised by higher salinity, becoming moderately saline. Groundwater is used for irrigation and domestic purposes to the south and immediately to the north of the Nepean River; however, further north of the river, groundwater quality is typically only suitable for stock (AGL 2013).

The coal seams present in the Illawarra Coal Measures are both regionally and locally minor water bearing zones. Due to the greater depth of burial of the coal measures and fine-grained nature of the sedimentary rocks, the permeability is generally lower than the overlying sandstone aquifers. Recharge to the Permian water bearing zones is likely to occur where formations are outcropping, which occurs at a significant distance to the south of the CGP. Salinity of the water bearing zones is typically brackish to moderately saline.

Within the CGP, there is limited rainfall recharge to the Ashfield Shale with most rainfall generating runoff and overland flow. Some leakage through the Ashfield Shale into the Hawkesbury Sandstone is expected where there is adequate fracture spacing; however, it is anticipated that most recharge to the sandstone aquifers occurs via lateral groundwater through-flow from upgradient and up-dip areas to the south. There is insufficient data within the CGP to define local flow paths and natural discharge zones. Regionally, groundwater flow is predominantly towards the north or northeast, eventually discharging via the Georges, Parramatta or Hawkesbury river systems, and ultimately offshore to the east. Although groundwater-surface water interactions are not well defined in the area, locally, there may be a small base flow or interflow discharge component to local stream headwaters during wet periods (Parsons Brinckerhoff 2010).

3 Monitoring program

3.1 Monitoring network

Construction details for the original 11 monitoring bores within the CGP area are presented in Table 3.1 and Figure 3.1. The current monitoring network consists of only the Menangle Park and Glenlee monitoring bores as the Denham Court monitoring bores (RMB01-04) were decommissioned in October 2016.

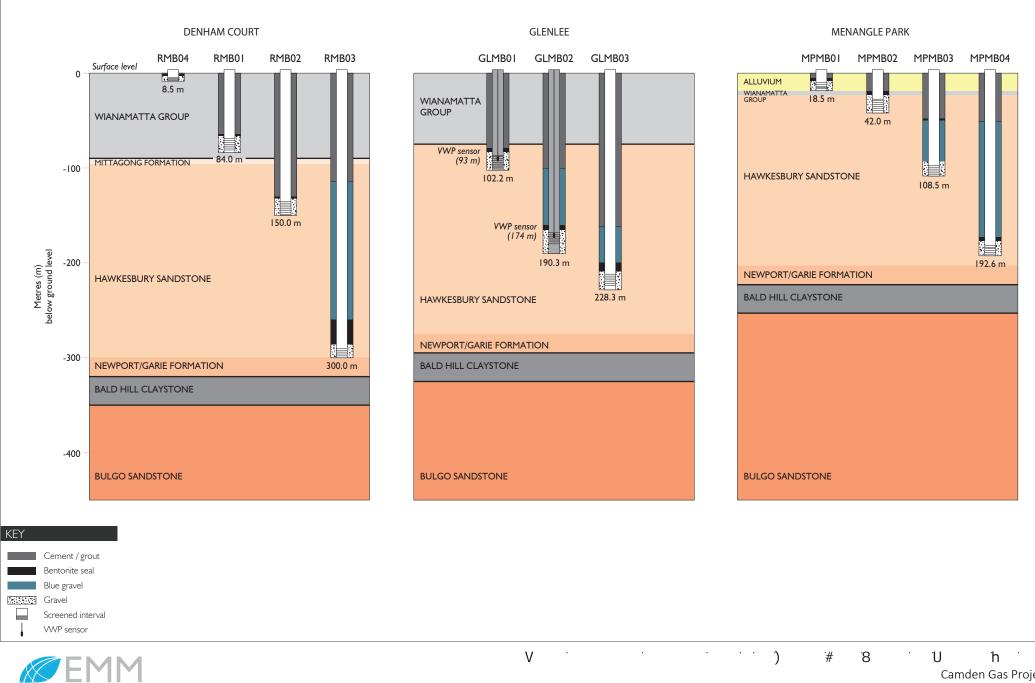

Monitoring bore	Location	Total depth (mbgl)	Screened depth (mbgl)	Lithology	Formation
RMB01 ²	Denham Court	84.0	69.0 - 81.0	Siltstone	Ashfield Shale
RMB02 ²	Denham Court	150.0	135.0 - 147.0	Sandstone	Hawkesbury Sandstone (upper)
RMB03 ²	Denham Court	300.0	290.0 - 299.0	Sandstone	Hawkesbury Sandstone (lower)
RMB04 ²	Denham Court	8.5	4.5 – 7.5	Clay/siltstone	Ashfield Shale (weathered)
MPMB01	Menangle Park	18.5	10.0 - 16.0	Clay	Alluvium
MPMB02	Menangle Park	42.0	27.4 – 39.4	Sandstone	Hawkesbury Sandstone (upper)
MPMB03	Menangle Park	108.5	97.0 - 106.0	Sandstone	Hawkesbury Sandstone (middle)
MPMB04	Menangle Park	192.6	182.6 - 191.6	Sandstone	Hawkesbury Sandstone (lower)
GLMB01	Glenlee	102.2	87.0 - 99.0 ¹	Sandstone	Hawkesbury Sandstone (upper)
GLMB02	Glenlee	190.3	$168.0 - 180.0^1$	Sandstone	Hawkesbury Sandstone (middle)
GLMB03	Glenlee	228.3	212.0 - 224.0	Sandstone	Hawkesbury Sandstone (lower)

Table 3.1 Groundwater monitoring bore details

Notes: 1. Monitoring bores GLMB01 and GLMB02 were converted to vibrating wire piezometers (VWP) on 12 March 2015 to maintain borehole integrity (Parsons Brinckerhoff 2015b); the VWP sensors are installed at 93 mbgl and 174 mbgl respectively.

2. Monitoring bores RMB01-04 were decommissioned early October 2016 and are no longer monitored.

mbgl – metres below ground level.

3.2 Water level monitoring

3.2.1 Groundwater levels

Pressure transducers (Solinst Levelogger (M30) dataloggers) are suspended from a galvanised steel wire in the water column and programmed to record a groundwater level every six hours. To verify the level recorded by the dataloggers, manual measurements are recorded periodically using an electronic dip meter. The monitoring start date of the datalogger data at each monitoring bores is shown in Table 3.2.

A barometric logger installed above the water table at monitoring bore MPMB01 records changes in atmospheric pressure. Data from this logger are used to correct for the effects of changing barometric pressure on water level loggers in the adjacent monitoring bores.

Table 3.2 Summary of water level monitoring locations and data collection periods

Monitoring locations	Monitoring period
Denham Court (RMB01, RMB02, RMB03, RMB04)	November 2011 (June 2013 for RMB04) – October 2016
Menangle Park (MPMB01, MPMB02, MPMB03, MPMB04)	June 2013 – present
Glenlee (GLMB01, GLMB02, GLMB03)	February 2014 – present

The vibrating wire piezometer (VWP) sensors at GLMB01 and GLMB02, which were installed in March 2015, are interpreted to have stabilised at lower piezometric pressure head levels compared with pressures observed from the former standpipe monitoring bores prior to conversion to VWPs. The resulting data is not considered to be representative of formation pressures. It is possible that during the conversion of the monitoring bores to VWPs the grout did not fully penetrate the gravel pack of the former standpipe monitoring bore, creating an unnatural pressure gradient adjacent to the piezometer and bore wall. The gravel pack has a much higher hydraulic conductivity (K) (both horizontal and vertical K) than the grouted VWP sensor and the surrounding formation. In this case the higher vertical gradient in the gravel pack may be responsible for reducing horizontal pressure on the sensor hence the observed pressure difference. Although the absolute pressure values post-VWP installation are not representative of formation pressures, the trends in the data are still useful.

Monitoring paused briefly at GLMB03 in October 2021 due to the detection of elevated levels of naturally occurring hazardous gases present within the bore. Water level data has not been downloaded since November 2021 and is planned to be next downloaded in October 2022.

3.2.2 Surface water levels

Water levels in the Nepean River are monitored by the BoM (gauging station 68216) using automatic dataloggers close to the Menangle Park site (Figure 1.1). These water levels have been included in the hydrograph for the Menangle Park site for comparison (refer to Section 4; Figure 4.1). The river height is derived from automated telemetric real-time data that have been processed to remove erroneous data.

3.3 Water quality monitoring

Groundwater sampling has been undertaken on 11 occasions at Denham Court (since November 2011), 20 occasions at Menangle Park (since August 2013) and 18 occasions at Glenlee (since February 2014) with details provided in Table 3.3.

Surface water quality sampling has been undertaken on 11 occasions (since 2013) at the Nepean River site next to the Menangle Park groundwater monitoring site.

Groundwater and surface water sampling was undertaken twice in the 2021/22 monitoring period at Menangle Park, Glenlee and the Nepean River on 15 November 2021 and 13 April 2022.

Sampling of groundwater and surface water was undertaken by Parsons Brinckerhoff from October 2011 through to April 2016. Sampling from October 2016 onwards has been undertaken by EMM.

Sampling event	Denham Court	Menangle Park	Glenlee	Reference report
November 2011	٧ ¹	-	-	Parsons Brinckerhoff (2012)
May 2013	٧ ¹	-	-	Parsons Brinckerhoff (2013a)
August 2013	٧ ²	v ³	-	Parsons Brinckerhoff (2013c)
November 2013	$\sqrt{4}$	V	-	Parsons Brinckerhoff (2014c)
February 2014	٧ ²	V	٧	Parsons Brinckerhoff (2014d)
May 2014	√ ²	V	٧	Parsons Brinckerhoff (2014e)
August 2014	√ ²	V	٧	Parsons Brinckerhoff (2014f)
January 2015	√ ²	V	٧	Parsons Brinckerhoff (2015a)
April 2015	√ ²	V	$\sqrt{5}$	Parsons Brinckerhoff (2015b)
October 2015	$\sqrt{4}$	V	$\sqrt{5}$	Parsons Brinckerhoff (2015d)
April 2016	$\sqrt{4}$	V	$\sqrt{5}$	Parsons Brinckerhoff (2016a)
October 2016	*	V	$\sqrt{5}$	EMM (2016)
April 2017	*	V	$\sqrt{5}$	EMM (2017a)
October 2017	*	V	$\sqrt{5}$	EMM (2017c)
April 2018	*	V	٧ ⁵⁶	EMM (2018a)
October 2018	*	V	$\sqrt{5}$	EMM (2018c)
April 2019	*	V	$\sqrt{5}$	EMM (2019a)
October 2019	*	V	$\sqrt{5}$	EMM (2019c)
April 2020	*	V	$\sqrt{5}$	EMM (2020a)
November 2020	*	V	$\sqrt{5}$	EMM (2020c)
April 2021	*	V	$\sqrt{5}$	EMM (2021a)
November 2021	*	V	$\sqrt{5}$	EMM (2021c)
April 2022	*	V	√ ⁵⁷	EMM (2022)

Table 3.3Groundwater quality program

Notes: 1. RMB01 not sampled due to insufficient water in monitoring bore.

2. RMB01 and RMB02 not sampled due to insufficient water in monitoring bores.

3. MPMB04 not sampled due to blockage in monitoring bore (Parsons Brinckerhoff 2013b).

4. RMB04 not sampled due to insufficient water in monitoring bore.

5. GLMB01 and GLMB02 not sampled as converted to vibrating wire piezometers (VWP) in March 2015 (Parsons Brinckerhoff 2015b).

6. GLMB03, MPMB03, and MPMB04 were re-sampled on 24 April 2018 to include dissolved methane analysis,

7. GLMB03 was not sampled due to elevated levels of naturally occurring hazardous gases in this bore.

- = monitoring locations not yet installed.

*= Site not sampled due to bore decommissioning in early October 2016.

3.3.1 Sampling techniques

Two methods were used to obtain groundwater quality samples from the monitoring bores. The methods were selected based on the permeability of the screened formation of each bore, which was determined during hydraulic conductivity testing. In summary:

- a submersible 12V pump was used at higher yielding bores MPMB01 and MPMB02; and
- a micro-purge[™] low flow sampling pump was used at lower yielding monitoring bores and selected deeper bores: MPMB03, MPMB04 and GLMB03.

Where a submersible pump was used, a minimum of three well volumes was purged from the monitoring bore prior to sampling to allow a representative groundwater sample to be collected. Water quality parameters were measured during and immediately after purging to monitor water quality changes and to indicate representative groundwater suitable for sampling and analysis.

The micro-purge[™] system allows groundwater to be drawn into the pump intake directly from the screened portion of the aquifer, eliminating the need to purge relatively large volumes of groundwater from these bores. Water quality parameters were monitored during the micro-purge[™] pumping to ensure that a representative groundwater sample was collected.

Physicochemical parameters (pH, electrical conductivity (EC), temperature, total dissolved solids (TDS), dissolved oxygen (DO), and oxidation reduction potential (ORP)) were measured during and following purging using a calibrated hand-held water quality meter.

The surface water samples were taken at the river bank using a telescopic sampler. The sample was collected from just below the water surface and approximately 1 m away from the river bank.

3.3.2 Chemical analysis of water

Groundwater and surface water samples collected in the field were analysed for a broad chemical suite designed specifically to assess the chemical characteristics of the different water bearing zones at the monitoring sites. Table 3.4 details the analytical suite.

Category	Parameters		
Physicochemical parameters	Electrical Conductivity (EC)	рН	Total Dissolved Solids (TDS)
(measured in the field)	Temperature	Redox Potential (ORP)	Dissolved Oxygen (DO)
General parameters	EC ¹	рН ^{1, 3}	TDS
Major ions	Calcium	Chloride	Fluoride
	Magnesium	Bicarbonate	Silica
	Sodium	Sulphate	Bromine
	Potassium		
Metals and minor/trace	Aluminium	Cobalt	Mercury ²
elements	Antimony ¹	Copper	Nickel
	Arsenic	Cyanide ¹	Selenium
	Barium	Iron	Strontium
	Boron	Lead	Zinc
	Beryllium	Manganese	Uranium
	Cadmium	Molybdenum	Vanadium

Table 3.4 Analytical suite

Table 3.4 Analytical suite

Category	Parameters		
Nutrients	Ammonia Nitrite	Nitrate Total organic carbon (TOC)	Phosphorus (total) Phosphorus (reactive)
Hydrocarbons	Phenol compounds Polycyclic aromatic hydrocarbons (PAH)	Total petroleum hydrocarbons (TPH)	Benzene, toluene, ethyl benzene and xylenes (BTEX)
Dissolved gases	Methane Ethene Ethane	Propane Propene	Butene Butane

Notes: 1. For samples collected since the May 2013 event.

2. For samples collected since the August 2013 sampling event.

3. Generally analysed outside of recommended holding times.

Samples requiring laboratory analysis were analysed by Australian Laboratory Services (ALS) in Smithfield, a NATA accredited laboratory.

Water samples for laboratory analysis were collected in sample bottles specified by the laboratory, with appropriate preservation where required. Samples undergoing dissolved metal analysis were filtered through 0.45 μ m filters in the field prior to collection.

3.3.3 Quality assurance and quality control (QA/QC)

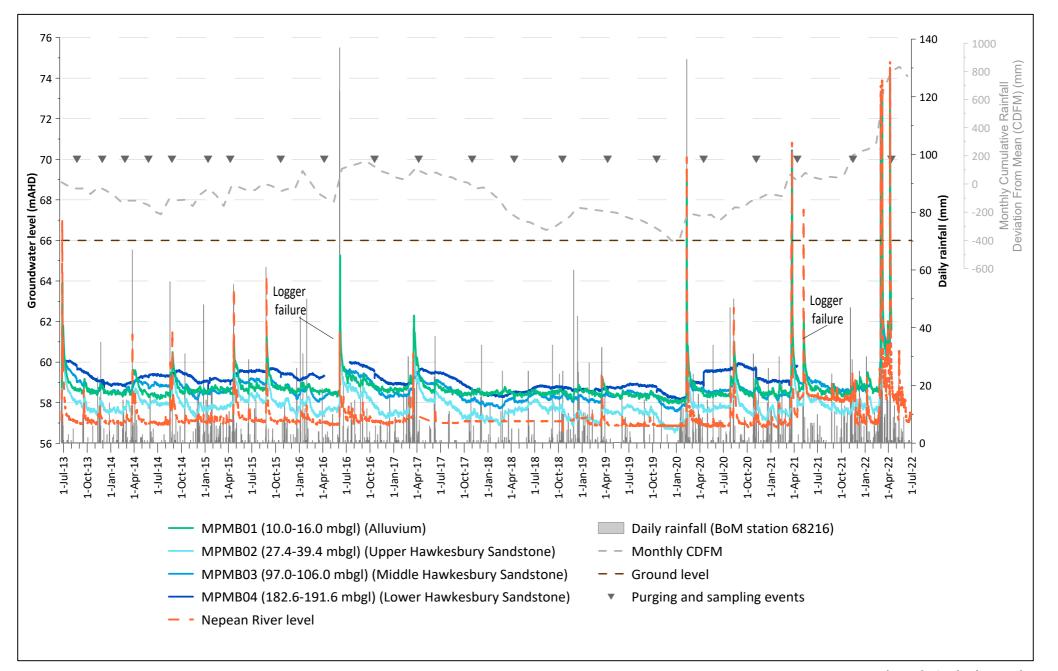
i Field QA/QC

The following field sampling QA/QC procedures were applied to prevent cross-contamination and preserve sample integrity:

- samples were collected in clearly labelled bottles with appropriate preservation solutions;
- samples were delivered to the laboratories within the specified holding times (except for pH); and
- unstable parameters were analysed in the field (physicochemical parameters).

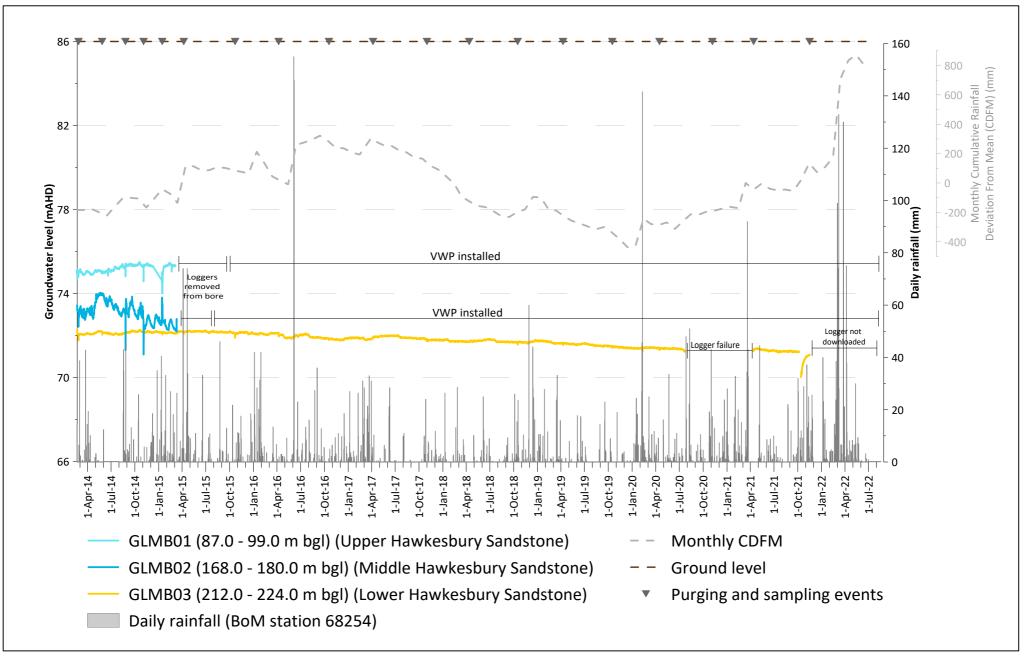
ii Laboratory QA/QC

The laboratories conduct their own internal QA/QC program to assess the repeatability of the analytical procedures and instrument accuracy. These programs include analysis of laboratory sample duplicates, spike samples, certified reference standards, surrogate standards/spikes and laboratory blanks. In addition, a duplicate sample is collected in the field to assess sampling and laboratory analysis accuracy.


4 Groundwater levels

Hydrographs showing groundwater levels and rainfall from the start of monitoring until April 2022 (the most recent collection of data) are presented for Menangle Park in Figure 4.1 and Glenlee in Figure 4.2. The Menangle Park site is located close to the Nepean River and river levels from BoM gauging station 068216 have also been included in the hydrograph for comparison (Figure 4.1). Individual hydrographs for each monitoring bore are included in Appendix A.

As discussed in Section 3.2.1, VWPs were installed at GLMB01 and GLMB02 in March 2015. It is interpreted that the pressures of the VWP have stabilised at lower piezometric pressure head levels compared with those observed at the former standpipe monitoring bores prior to conversion to VWPs. This discrepancy was likely caused by difficulties of establishing a complete seal and, therefore, effective communication between the grouted VWP and the rock formation due to the presence of the existing bentonite plug in the annular void (ie between the PVC bore casing and the borehole). The absolute pressure values post-VWP installation are not representative of formation pressures. These data are presented on individual hydrographs for each monitoring bore are in Appendix A.


The datalogger at Glenlee monitoring bore GLMB03 was not downloaded during the April 2022 monitoring round and water quality sampling from this bore ceased following observations of elevated levels of naturally occurring hazardous gases in this bore (Section 3.2.1). The datalogger continues to monitor groundwater levels.

The datalogger at MPMB04 was malfunctioning, likely because of the recent floods, and groundwater level data could not be retrieved. The datalogger was replaced in April 2022.

Menangle Park site hydrographs Camden Gas Project 2021 - 2022 Water Monitoring Report Figure 4.1

Glenlee site hydrographs Camden Gas Project 2021 - 2022 Water Monitoring Report Figure 4.2

4.1 Temporal trends

4.1.1 Alluvium

The groundwater level in the alluvium (MPMB01) is shallow (less than 10 mbgl) and shows a direct response to rainfall and flood events (Figure 4.1). During the monitoring year, the groundwater level exhibited a positive trend in response to a period of higher-than-average rainfall. A significant increase in groundwater level was recorded in response to the flood event of March and April 2022, showing that the site was inundated on several occasions.

4.1.2 Ashfield Shale

Monitoring of the Ashfield Shale is no longer completed as the Denham Court bores have been decommissioned.

Previous results have shown that groundwater levels in the Ashfield Shale (RMB01) are typically deep (approximately 80 mbgl) and showed no apparent response to rainfall (EMM 2017b).

4.1.3 Hawkesbury Sandstone

At the Menangle Park site, located next to the Nepean River, groundwater levels are shallow (less than 10 mbgl) (Appendix A). A definite response to rainfall and flood events is observed in the upper and middle Hawkesbury Sandstone (monitoring bores MPMB02 and MPMB03), while a slightly subdued and delayed response is generally observed in the lower Hawkesbury Sandstone (MPMB04) (Figure 4.1). A significant increase in groundwater level was recorded in all the monitoring bores in response to the flood events of March and April 2022.

At the Glenlee site, groundwater levels are shallow (less than 15 mbgl) (Appendix A). Data recorded at GLMB03 until October 2021 indicates a slight downward trend in the groundwater level in the lower Hawkesbury Sandstone from mid-2016 onwards (Figure 4.2). The groundwater level data do not clearly show a response to the recent increased rainfall recharge. Therefore, it is suspected the trend in data may not be representative of the true groundwater levels and responses at this site. It is possible the water level data since 2016 are being influenced by localised changes in chemistry and calcium carbonate precipitation within and proximate to the bore (Section 5.1). The datalogger malfunctioned and data were unable to be collected for a period (October 2020 – April 2021); more data is needed to confirm the cause of the downward trend.

4.2 Spatial trends in the Hawkesbury Sandstone

The conceptual model (AGL 2013) and hydrogeological setting (Section 2.4) suggest that regional groundwater flow within the Hawkesbury Sandstone is from south to north towards the incised river systems of the Sydney Basin.

The groundwater level elevations in the Hawkesbury Sandstone aquifer can be compared between the two monitoring sites. The data collected at the CGP suggests that groundwater flow (in the Hawkesbury Sandstone at least) is more complex than the regional conceptual model. The data suggests that:

- the Nepean River in the vicinity of the Menangle Park site is a probable groundwater discharge area (as there is upward groundwater flow within the Hawkesbury Sandstone and there is no Ashfield Shale to act as a cap rock) - groundwater elevations here are between 57 mAHD and 61 mAHD and the Nepean River height is typically between 57 mAHD and 59 mAHD; and
- the Glenlee site may be close to a groundwater divide as groundwater elevations are between 71 mAHD and 75 mAHD.

4.3 Groundwater-surface water interactions

Hydraulic connection between surface water and groundwater exists where the river is in direct contact with the underlying aquifer (Bouwer and Maddock 1997). A 'gaining' stream exists where the water table or groundwater level in a connected aquifer is higher than the running level in a stream and groundwater will flow or discharge to the stream (Land and Water Australia 2007).

The Nepean River level shows a clear response to rainfall (Figure 4.1). The river level is usually lower than the level in the alluvium and Hawkesbury Sandstone units, indicating the river is a gaining river at the Menangle Park site during most of the monitoring period, except for short periods during extremely high rainfall events, when recharge to the alluvial groundwater system occurs.

4.4 Vertical gradients

Vertical gradients provide an indication of the potential for groundwater to flow vertically upward or downward at a particular location. A downward hydraulic gradient indicates a potential for downward flow from the shallower unit to the deeper unit, while an upward gradient indicates the opposite. It is noted that the actual flow direction and velocity is also governed by permeability, particularly the permeability of the confining units.

Potential vertical gradients between the various hydrogeological units were assessed and vary between sites. The following observations are made:

- There is an apparent upward hydraulic gradient at the Menangle Park site within the monitored zones of the Hawkesbury Sandstone; however, a downward gradient exists between the alluvium and the upper Hawkesbury Sandstone. The similar response to rainfall and flood events between the alluvial monitoring bore and the Hawkesbury Sandstone monitoring bores indicates connectivity between the two formations at this location, which is expected given the lack of a substantial confining layer (for example shale) between the formations.
- There is an apparent downward hydraulic gradient within the Hawkesbury Sandstone at the Glenlee site.

Vertical gradients can be influenced by structural geological features (ie faults, folds, and lineaments) and low permeability strata, as described in sections 2.3 and 2.4 respectively.

5 Water quality

Water quality monitoring has been undertaken between November 2011 and April 2022. Water quality samples for the 2021/22 monitoring year were collected on the 15 November 2021 and the 13 April 2022. These results are summarised in this chapter and are compared to previous monitoring years (EMM 2016,2017b, 2018b, 2019b, 2020b, 2021b, 2022; Parsons Brinckerhoff 2014, 2014b and 2015e).

The 2021/22 monitoring year full water quality results are presented in Appendix B and laboratory results in Appendix C.

GLMB03 was remediated in October 2021 to address changes in water quality, including increased pH, precipitation of calcium carbonate, and sampling difficulties. The changes were attributed to natural causes.

5.1 Groundwater quality

5.1.1 Field parameters

Time series of field EC and pH for the CGP monitoring bores are presented in Figure 5.1 and

Figure 5.2. It is suspected that the field pH probe used during the sampling event on 12 April 2018 was calibrated incorrectly; the measured pH values in all monitoring bores were approximately 1 unit lower than historical and following measurements.

Groundwater sampled from the alluvium at Menangle Park (MPMB01) is classified as fresh to marginally brackish. The pH at MPMB01 is acidic and was measured between 5.2 to 5.4 during the 2021/22 monitoring round. The Menangle Park site is a former sand and gravel quarry that has been subsequently rehabilitated. The observed low pH may be related to these previous land use activities.

Groundwater in the Hawkesbury Sandstone at the Menangle Park site (MPMB02-04) is classified as fresh to marginally brackish. Historically, slightly saline conditions are observed at the Glenlee sites GLMB01-02, while GLMB03 continues to be brackish to slightly saline. The fresh to marginally brackish conditions at the Menangle Park site are likely due to the influence of rainfall recharge and connectivity with the Nepean River.

The salinity recorded during the 2021/22 monitoring year at the Menangle Park site was within the typical range compared to previous monitoring rounds, with the exception of MPMB03, which recorded a lower than average salinity level for this bore in April 2022. This is most likely attributed to the March 2022 flood event where the Menangle Park site was temporarily inundated.

Salinity within the Hawkesbury Sandstone does not show a clear depth related trend at Menangle Park however, salinity decreases with depth at the Glenlee site. This decrease is likely a result of saline groundwater within the Ashfield Shale migrating into the underlying aquifer because of vertical leakage. The pH generally increases with depth within the Hawkesbury Sandstone.

The pH level recorded in the lower Hawkesbury Sandstone at the Glenlee site (GLMB03) across the monitored period has ranged substantially between neutral and highly alkaline. During this monitoring year, the pH level was average to lower than historically observed at this location. This change in water quality is likely due to the bore rehabilitation that was undertaken in October 2021. GLMB03 was airlifted to purge the bore and an acid solution was injected to dissolve the calcium carbonate deposit encrusting the screens, the solution was then airlifted from the bore. Groundwater level and field parameters are now back within the historical range (EMM 2021c). GLMB03 was unable to be sampled in April 2022 due to high levels of naturally occurring hazardous gas, so longer term trends of the remediation have not been able to be observed.

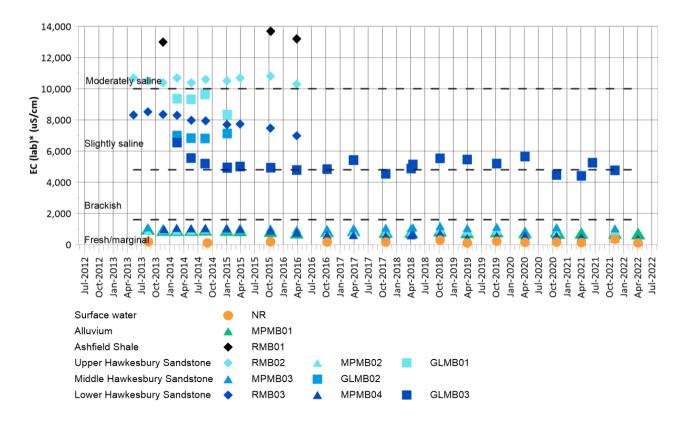



Figure 5.1

EC time series for CGP monitoring bores and Nepean River sample

pH time series for CGP monitoring bores and Nepean River sample

5.1.2 Major ions

The major ion characteristics of groundwater samples for this monitoring year are shown in a piper diagram and representative bi-variate plots in Figure 5.4. A piper diagram is a graphical representation of the relative concentrations of major ions (Ca^{2+} , Mg^{2+} , Na^+ , K^+ , Cl^- , HCO_3^- , CO_3^{2-} and SO_4^{2-}). The ratios of sodium/chloride and magnesium/chloride versus chloride concentrations are also presented in two bi-variate plots. Chloride is typically assumed to be a conservative (non-reactive) ion in groundwater systems. Evapotranspiration of the initial water with low chloride concentration would therefore be expected to result in a horizontal trend in a major ion/chloride versus chloride plot.

The alluvium (MPMB01) shares similarities with sea water which is different to the Hawkesbury Sandstone. Groundwater in the alluvium is dominated by sodium and chloride and groundwater in the Hawkesbury Sandstone and Nepean River is dominated by sodium and bicarbonate. Compared to the previous monitoring year, groundwater in GLMB03 in this monitoring year was observed to have higher proportions of calcium and magnesium compared to sodium and potassium. This change is likely related to the remediation of the bore.

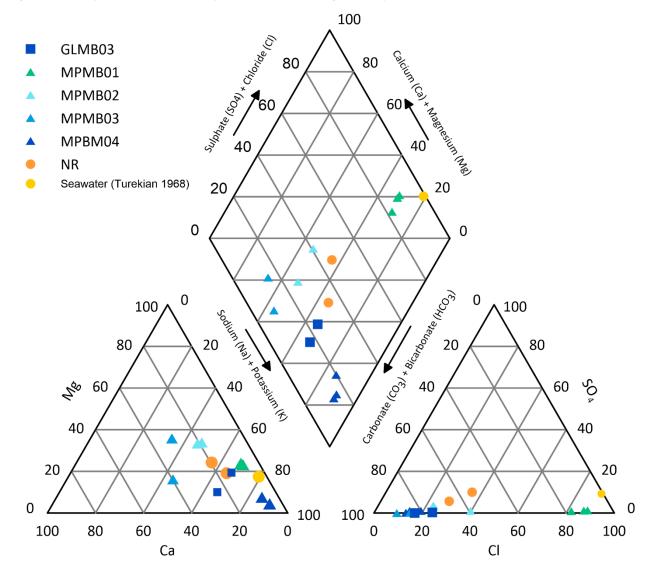
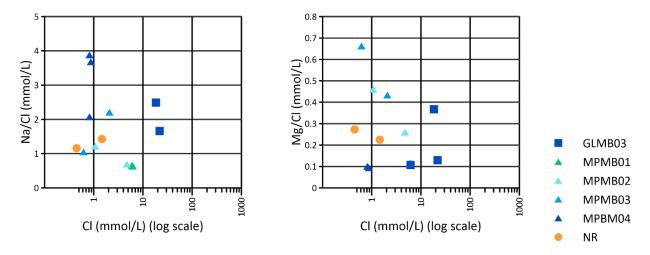
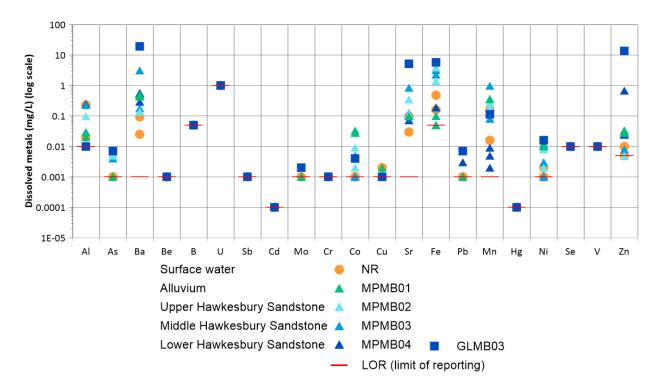



Figure 5.3 Major ion chemistry of groundwater for CGP monitoring bores (2021/22 monitoring year)


Figure 5.4 Major ion chemistry of groundwater for CGP monitoring bores (2020/21 monitoring year)

5.1.3 Dissolved metals

Concentrations of dissolved metals in groundwater for 2021-22 are presented in Figure 5.5. The major findings for dissolved metals for this monitoring year are as follows:

- Dissolved metal concentrations below the limit of reporting occurred in beryllium, boron, uranium, antimony, cadmium, chromium, mercury, selenium and vanadium, which is historically typical.
- Dissolved metal concentrations are generally similar in the alluvium and the Hawkesbury Sandstone, with exceptions discussed below. Dissolved metal concentrations across all sites were generally comparable to the previous monitoring events (2013 to 2022).
- Consistent with previous years, arsenic is lower in the alluvium and Nepean River than other monitoring locations.
- Consistent with previous years, copper is higher in the alluvium and Nepean River than other monitoring locations.
- Consistent with previous years, molybdenum and zinc is highest in the Lower Hawkesbury Sandstone than other monitoring locations. However, at GLMB03 in November 2021, zinc was two hundred percent higher than average. This is considered erroneous but due to high gas levels, GLMB03 was unable to be resampled in April 2022.
- Consistent with previous years, aluminium and cobalt is lower in the Lower Hawkesbury Sandstone than other monitoring locations.
- Consistent with previous years, barium and strontium is highest in GLMB03 and lowest in the Nepean River.
- Consistent with previous years, iron and nickel is lowest in MPMB04.
- Above LOR lead concentrations were reported at GLMB03 during the November 2021 monitoring round, and at MPMB04 in the April 2022 monitoring round. These measurements are not historically typical and will be re-sampled in October 2022.

• Compared to the last monitoring year, GLMB03 had notable differences in dissolved metals, including at least an order of magnitude higher concentrations of iron, zinc, manganese, nickel. It appears the previous monitoring year was anomalous, and this years' dissolved metals data is generally more consistent with earlier monitoring data than last years', with the exception of zinc.

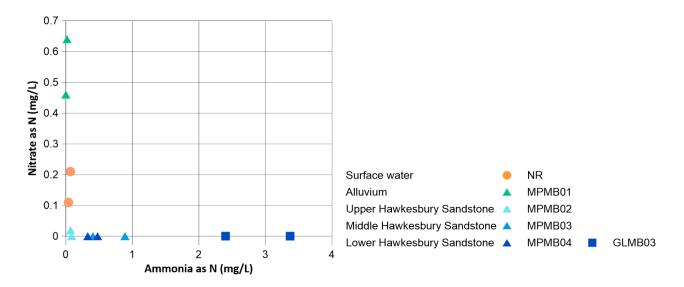
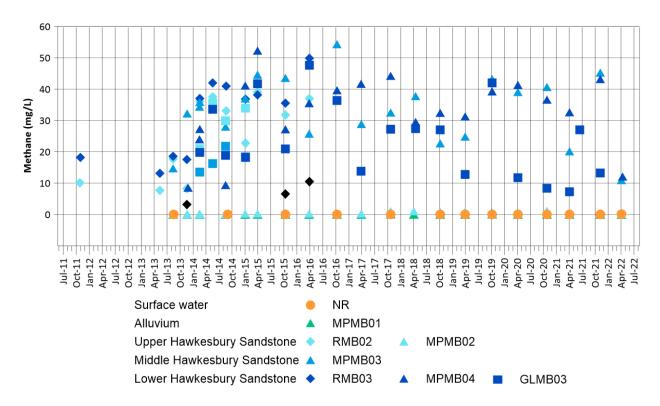


Figure 5.5 Dissolved metal concentrations in groundwater for CGP monitoring bores (2021/22 monitoring year)

5.1.4 Nutrients

A plot showing ammonia versus nitrate in groundwater is presented in Figure 5.6. The major findings for nutrients are as follows:


- Nitrate concentrations in the Hawkesbury Sandstone groundwater remained low (<0.1 mg/L as N). Higher concentrations (up to 0.64 mg/L) continued to be recorded in the alluvial aquifer (MPMB01) and Nepean River (Figure 5.6).
- Ammonia concentrations were the lowest at Menangle Park, which is consistent with previous monitoring years (Figure 5.6).
- Apart from a low nitrite concentration (0.01 mg/L) recorded at MPMB01, nitrite concentrations remained below the laboratory LOR at all monitoring bores and in the Nepean River (Appendix B).
- Low total phosphorus concentrations were detected in all hydrogeological units. Reactive phosphorus concentrations (between 0.01 and 0.09 mg/L) were detected in at all sites except MPMB04.
- Total organic carbon (TOC) concentrations were generally comparable between the lower, middle and upper Hawkesbury Sandstone at both sites and the Nepean River. TOC was not detected in the alluvium.

5.1.5 Dissolved gasses

A time series plot of dissolved methane concentrations in groundwater is presented in Figure 5.7.

Figure 5.7 Dissolved methane time series for CGP monitoring bores and Nepean River samples

The major findings for dissolved gases are as follows:

 Low concentrations of dissolved methane were detected in the alluvium (MPMB01) in November 2021 (0.013 mg/L) but not in April 2022.

- Dissolved methane was detected in the Hawkesbury Sandstone at all monitoring sites. Dissolved methane concentrations were lowest at MPMB02 with concentrations of between 0.08 and 0.35 mg/L while concentrations range between 11.0 and 45.3 mg/L at all other Hawkesbury Sandstone bores (Figure 5.7).
- Propane was detected at low concentrations (less than 0.05 mg/L) in groundwater in the lower Hawkesbury Sandstone at Glenlee site (GLMB03) but was not detected above the laboratory detection limits in any of the other monitoring bores.
- Dissolved ethane was detected at GLMB03 at 0.13 mg/L and 0.06 mg/L during the November 2021 and April 2022 monitoring rounds, respectively.

Dissolved methane is shown to be of mostly thermogenic origin (Parsons Brinckerhoff 2014). The presence of dissolved hydrocarbons observed in the groundwater within the Hawkesbury Sandstone is assessed to be naturally occurring, based on the values present within the groundwater at the former control site (Denham Court, RMB) located at significant distance from the CGP gas production wells (eg EMM 2016).

5.1.6 Dissolved hydrocarbons

The Menangle Park site is a former sand and gravel quarry that has been subsequently rehabilitated. Hydrocarbon detections (PAHs and TRHs) at this site may be related to these previous land use activities. During the 2021/22 monitoring year, hydrocarbon detections were not reported (ie reported below the laboratory LOR), except for TRH (C_6 - C_{10} fraction) and TPH (C_6 - C_9 fraction) detected at GLMB03, which is consistent with the previous monitoring years.

Toluene continued to be present in the lower Hawkesbury Sandstone (GLMB03 and MPMB04) (Appendix B). It is assessed to be naturally occurring, given that it has been detected in groundwater at all monitoring sites at similar concentrations since monitoring commenced, including the former control site (Denham Court, RMB) located at a significant distance from development activities (eg EMM 2016). No other BTEX compounds (ie benzene, xylenes and ethyl benzene) were detected during this monitoring year.

Dissolved hydrocarbons can occur naturally in groundwater, with concentrations derived from carbonaceous material (CSIRO 2011).

5.2 Surface water quality

Surface water quality results of the Nepean River are overall consistent with previous monitoring years. The results of the 2021/22 monitoring round were compared to ANZECC (2000) guidelines for freshwater ecosystems (95% protection level):

- pH is neutral, 6.8 in both November 2021 and April 2022. The pH of the Nepean River is generally higher than the pH of groundwater in the alluvium (Figure 5.1).
- Salinity is fresh, with electrical conductivities measured at 355 and 113 μS/cm in November 2021 and April 2022, respectively; the April 2022 reading is even lower than the ANZECC guideline range (125–2,200 μS/cm) and lower than groundwater in the alluvium (Figure 5.2).
- Dominant major ions are magnesium, sodium and bicarbonate (Figure 5.3).
- Dissolved metal concentrations are typically lower than those of groundwater in the alluvium and underlying Hawkesbury Sandstone units and below the guideline values. However, a few exceedances were recorded in November 2021 and April 2022 (which in some cases were higher than previous years):
 - aluminium concentration of 0.23 mg/L (April 2022) exceeded the guideline value of 0.055 mg/L;

- copper concentration of 0.002 mg/L (November 2021) exceeded the guideline value of 0.0014 mg/L; and
- zinc concentration of 0.01 mg/L (April 2022) exceeded the guideline value of 0.008 mg/L.
- Nutrient concentrations are generally low with the exception of the November 2021 and April 2022 ammonia concentration which was 0.04 mg/L and 0.07 mg/L respectively, which slightly exceeded the guideline concentration of 0.02 mg/L but was lower than the groundwater concentrations in the Hawkesbury Sandstone, and phosphorus concentration of 0.08 mg/L in November 2021 which slightly exceeded the guideline concentration of 0.05 mg/L.
- Dissolved methane was detected at a concentration similar to that of groundwater in the alluvium.
- No detections of dissolved hydrocarbons.

6 Discussion and conclusions

Monitoring of groundwater levels at the nested monitoring bore sites was undertaken using dataloggers, allowing water level trends to be identified in the alluvium, Ashfield Shale, and Hawkesbury Sandstone. Sampling of water quality at all sites also established useful trends.

The Denham Court nested groundwater monitoring site (monitoring bores RMB01, RMB02, RMB03 and RMB04) was decommissioned by AGL at the landowners' request in October 2016. The final water quality monitoring event from the Denham Court bores was in April 2016 (EMM 2016), water level data continued to be collected until decommissioning.

The main findings for the 2021/22 monitoring year regarding water levels are:

- The groundwater level in the alluvium at Menangle Park is less than 10 mbgl and shows a direct response to rainfall and flood events.
- Groundwater levels are shallow (less than 15 mbgl) in the Hawkesbury Sandstone at the Menangle Park and Glenlee sites.
- Groundwater levels appear to follow similar trends in each of the Hawkesbury Sandstone units (upper, middle and lower) at Menangle Park. A clear response to rainfall events can be observed even though this is an apparent groundwater discharge area.
- The datalogger at MPMB04 was malfunctioning likely due to recent floods. Groundwater level data could not be retrieved, the datalogger was replaced in April 2022.
- The datalogger in the lower Hawkesbury Sandstone monitoring bore at the Glenlee site (GLMB03) was not downloaded during the April 2022 monitoring round due to elevated levels of naturally occurring hazardous gases in this bore. Therefore, analysis of recent trends was not possible. Previous records and manual groundwater level measurements suggest a slight downward trend, which is unlikely to represent true groundwater levels and responses.
- The pressures in the VWP installed at GLMB01 and GLMB02 (installed in 2015) have stabilised at lower piezometric pressure head levels compared with pressures observed from the former standpipe monitoring bores, likely caused by inaccurate installation techniques. The measured pressures are not likely to be representative of formation pressures.
- For the regional Hawkesbury Sandstone aquifer, groundwater elevations are higher at the Glenlee site (approximately 71-75 mAHD) than the Menangle Park site (approximately 57-61 mAHD).
- Vertical gradients vary between sites. Upward gradients are evident at Menangle Park and downward gradients are evident the Glenlee site.
- The Nepean River elevation is usually lower than the groundwater elevation in the alluvium and Hawkesbury Sandstone units, indicating the river is a gaining stream around the Menangle Park site, except for short periods during very high rainfall events when recharge to the underlying groundwater systems is observed.
- The groundwater level data collected in the alluvium and Hawkesbury Sandstone are indicative of natural systems in long-term equilibrium with occasional seasonal responses to recharge when there is a connection with surface features, as evident at the Menangle site within the alluvium and Hawkesbury Sandstone.

No long-term groundwater level drawdown trends that can be definitively associated to CSG operations (which involves dewatering of the deep coal seams) have been observed in the groundwater level data at any of the monitored locations.

The main findings for the 2021/22 monitoring year regarding water quality are:

- Groundwater quality in the alluvium at the Menangle Park site is characterised as fresh to marginally saline and slightly acidic pH. Dissolved metal concentrations are typically low. Minor dissolved hydrocarbons were detected and may be related to previous land use activities.
- Groundwater quality in the Hawkesbury Sandstone ranges from fresh to marginally brackish at the Menangle Park site and is brackish to moderately saline at the Glenlee site. Salinity decreases with depth at the Glenlee site.
- pH and previously anomalous dissolved metal concentrations have returned to the general historical range in the lower Hawkesbury Sandstone monitoring bore at the Glenlee site during the 2021-22 monitoring year. This change in water quality is attributed to the bore remediation undertaken in October 2021.
- Minor detections of dissolved hydrocarbons were present in the lower Hawkesbury Sandstone. Dissolved methane was detected at all Hawkesbury Sandstone bores and is likely related to degassing of naturally occurring methane after purging during groundwater sampling events. Dissolved ethane and propane were detected at the Glenlee site only. These compounds are assessed to be naturally occurring given that methane has been observed to occur at all sites, including the former control site (Denham Court) which was located at a significant distance from any development activities.
- Toluene was detected at both lower Hawkesbury Sandstone monitoring points. It is assessed to be naturally occurring given that it has been detected at all sites, including the former control site (Denham Court) which was located at a significant distance from the CGP gas production wells. No other BTEX compounds were detected.
- No significant change in water quality was detected during the 2021/22 monitoring year compared to the previous monitoring year (EMM 2021b), except for GLMB03. GLMB03 was remediated in October 2021 to address changes in water quality, including increased pH, precipitation of calcium carbonate and lower sampling yields. The changes were associated with naturally occurring gases and attributed to natural causes.

No adverse water quality impacts that can be attributed to CSG operations were observed at any of the monitored sites. Water quality results are not significantly different between the former control site (Denham Court) and monitoring sites located within the CGP footprint (Menangle Park and Glenlee).

From the available data, there are no observable impacts to groundwater levels or quality or surface water quality that could be attributable to the CSG operations. There is also no evidence of connectivity between the shallower monitored zones and the coal seams which corroborates the conceptual model developed during the Phase 1 studies (Parsons Brinckerhoff 2011). The presence of extensive and thick claystone formations (aquitards and aquicludes) between the Hawkesbury Sandstone and the targeted coal seams restricts depressurisation and impedes the vertical flow of groundwater.

References

AGL Upstream Investments Pty Ltd 2013, 'Hydrogeological Summary of the Camden Gas project area'.

Alder, D, Byrnes, J, Cozens, S, Hill, M and Armstrong, M 1991, Programme Completion Report - Camden Drilling Programme, Coal and Petroleum Geology Branch, Department of Mineral Resources, Sydney.

ANZECC 2000, 'Chapter 3 Aquatic Ecosystems', in Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

Australian Water Resources Council 1988, 'Guidelines for the preparation of Australian hydrogeological maps', Department of Primary Industries and Energy, Australian Water Resources Council, Water Management Series no. 13.

Bembrick, CS, Herbert, C & Clarke, NR 1987, 'Permo-Triassic Stratigraphy', in Jones and Clarke (eds), Geology of the Penrith 1:100,000 Sheet 9030, Department of Minerals and Energy, Geological Survey of New South Wales, Sydney.

Blevin, J., Hall, L., Chapman, J., and Pryer, L. 2007, 'Sydney Basin Reservoir Prediction Study and GIS', Project MR705, Confidential Report to NSW DPI and Macquarie Energy by FrOG Tech Pty Ltd.

Bouwer H, Maddock T III 1997, 'Making sense of the interactions between groundwater and streamflow; lessons for water masters and adjudicators', Rivers, vol. 6, no. 1, pp. 19–31.

Bowman, HN 1974, Geology of the Wollongong, Kiama and Robertson 1:50,000 sheets, 9029-II, 9028-I & II. Geological Survey of New South Wales, Sydney, 179 pp.

Bray, A, Hatherly, P and Fergusson, CL 2010, 'Seismic reflection evidence for the evolution of the Camden Syncline and Lapstone Structural Complex, central Sydney Basin, Australia'. Australian Journal of Earth Sciences, vol. 57, pp. 993-1004.

Bureau of Meteorology, Climate Data Online, accessed 8 August 2019, http://www.bom.gov.au/climate/data/

CSIRO 2011, 'A desktop study of the occurrence of Total Petroleum Hydrocarbons (TPH) and partially watersoluble organic compounds in Permian coals and associated coal seam groundwater', Report for AGL Energy, EP-13-09-11-11.

EMM 2016, 2015-2016 Groundwater and Surface Water Monitoring Report – Camden Gas Project, prepared for AGL Upstream Investments Pty Ltd by EMM Consulting Pty Ltd.

- 2017a, FY17 Six-monthly monitoring update April 2017, letter prepared for AGL Upstream Investments Pty Ltd, dated 21 April 2017.
- 2017b, 2016-2017 Groundwater and surface water monitoring report Camden Gas Project, prepared by EMM for AGL Upstream Investments Pty Ltd.
- 2017c, FY18 Six-monthly monitoring update October 2017, letter prepared for AGL Upstream Investments Pty Ltd, dated 10 November 2017.
- 2018a, FY18 Six-monthly monitoring update April 2018, letter prepared for AGL Upstream Investments Pty Ltd, dated 28 May 2018.
- 2018b, 2017-2018 Groundwater and surface water monitoring report Camden Gas Project, prepared by EMM for AGL Upstream Investments Pty Ltd, dated 24 September 2018.
- 2018c, FY19 Six-monthly monitoring update October 2018, letter prepared for AGL Upstream Investments Pty Ltd, dated 21 November 2018.

- 2019a, FY19 Six-monthly monitoring update April 2019, letter prepared for AGL Upstream Investments Pty Ltd, dated 22 May 2019.
- 2019b, 2018-2019 Groundwater and surface water monitoring report Camden Gas Project, prepared by EMM for AGL Upstream Investments Pty Ltd, dated 23 September 2019.
- 2019c, FY20 Six-monthly monitoring update October 2019, letter prepared for AGL Upstream Investments Pty Ltd, dated 7 November 2019.
- 2020a, FY20 Six-monthly monitoring update April 2020, letter prepared for AGL Upstream Investments Pty Ltd, dated 6 May 2020.
- 2020b, 2019-2020 Groundwater and surface water monitoring report Camden Gas Project, prepared by EMM for AGL Upstream Investments Pty Ltd, dated 24 September 2020.
- 2020c, FY20 Six-monthly monitoring update November 2020, letter prepared for AGL Upstream Investments Pty Ltd, dated 2 December 2020.
- 2021a, FY21 Six-monthly monitoring update April 2021, letter prepared for AGL Upstream Investments Pty Ltd, dated 13 May 2021.
- 2021b, 2020-2021 Groundwater and surface water monitoring report Camden Gas Project, prepared by EMM for AGL Upstream Investments Pty Ltd, dated 9 September 2021.
- 2021c, FY21 Six-monthly monitoring update November 2021, letter prepared for AGL Upstream Investments Pty Ltd, dated 8 December 2021.
- 2022, FY22 Six-monthly monitoring update April 2022, letter prepared for AGL Upstream Investments Pty Ltd, dated 18 May 2022.

Land and Water Australia 2007, 'The Impact on Groundwater Use on Australia's Rivers', Technical report, April 2007.

Madden, A 2009, The Scarborough Sandstone and its connectivity with longwall mining in a water supply catchment', Groundwater 2010, National Groundwater conference, Canberra, NSW, Australia, 31 October – 4 November 2010.

McLean, W and Ross, JB 2009, 'Hydrochemistry of the Hawkesbury Sandstone Aquifers in Western Sydney and the Upper Nepean Catchment', IAH NSW, Groundwater in the Sydney Basin Symposium, Sydney, NSW, Australia, 4-5 August 2009.

Moffit, RS 1999, Southern Coalfield Regional Geology 1:100 000, 1st edition, Geological Survey of New South Wales, Sydney.

2000, A Compilation of the Geology of the Southern Coalfield, Notes to Accompany the 1:100,000
 Southern Coalfield Geological Map, Geological Survey Report No. GS1998/277, Geological Survey of New South Wales, Sydney.

NSW Office of Water (NOW) 2011, 'Water Sharing Plan for the Greater Metropolitan Region Groundwater Sources – Background document', dated July 2011.

Old, AN 1942, 'The Wianamatta Shale Waters of the Sydney District', Agricultural Gazette of New South Wales, Misc. pub. No. 3225.

Parkin, TJ 2002, 'Disrupted flow in a localised area of the Georges River above longwall mining operations in Appin, NSW. A geophysical investigation based on earth resistivity techniques', Honours Thesis, Department of Earth and Planetary Sciences, Macquarie University.

Parsons Brinckerhoff 2006, 'Hydrochemical and environmental isotope program — Upper Nepean groundwater investigation sites', Report to the Sydney Catchment Authority, Sydney.

- 2011, 'Phase 1 Groundwater Assessment and Conceptual Hydrogeological Model for the Northern Expansion of the Camden Gas Project', 2114759A PR_5375 RevF, dated February 2011, Parsons Brinckerhoff, Sydney.
- 2012, 'Update on the Camden North Phase 2 Groundwater Program Denham Court Road', 2114759B-SCW-LTR-5637 Rev A, dated August 2012, Parsons Brinckerhoff, Sydney.
- 2013a, 'Camden Gas Project 2012–2013 Annual Groundwater Monitoring Status Report', dated October 2013, RPT_7568 Rev C, dated October 2013, Parsons Brinckerhoff, Sydney.
- 2013b, Water quality investigation Camden Gas Project, 2114759C PT_7196 RevD, dated July 2013, Parsons Brinckerhoff, Sydney.
- 2013c, 'Camden Gas project FY14 Q1 Groundwater Monitoring Update September 2013', RPT_7573 Rev B, dated October 2013, Parsons Brinckerhoff, Sydney.
- 2014a, 'Drilling Completion Report Denham Court, Menangle Park and Glenlee. Camden Gas
 Project', 2114759B-WAT-RPT-7763 Rev01, draft dated August 2014, Parsons Brinckerhoff, Sydney.
- 2014b, 'Camden Gas Project 2013-2014 Groundwater and Surface Water Monitoring Status Report', 2268518A-WAT-RPT-7779 RevC, dated October 2014, Parsons Brinckerhoff, Sydney.
- 2014c, 'Camden Gas Project FY14 Q2 Groundwater Monitoring Update December 2013',
 2193361A-WAT-RPT-7640 RevC, dated April 2014, Parsons Brinckerhoff, Sydney.
- 2014d, 'Camden Gas Project FY14 Q3 Groundwater Monitoring Update March 2014', 2193361A-WAT-RPT-7720 RevB, dated April 2014, Parsons Brinckerhoff, Sydney.
- 2014e, 'Camden Gas Project FY14 Q4 Groundwater Monitoring Update June 2014', 2193361A-WAT-RPT-7748 RevB, dated June 2014, Parsons Brinckerhoff, Sydney.
- 2014f, 'Camden Gas Project FY15 Q1 Groundwater Monitoring Update October 2014', 2268518A-WAT-MEM-001 RevA, dated October 2014, Parsons Brinckerhoff, Sydney.
- 2015a, 'Camden Gas Project FY15 Q2 Groundwater Monitoring Update January 2015',
 2268518A-WAT-MEM-003 RevB, dated March 2015, Parsons Brinckerhoff, Sydney.
- 2015b, 'Camden Gas Project FY15 Q3 Groundwater Monitoring Update April 2015', 2268518B-WAT-MEM-001 RevD, dated May 2015, Parsons Brinckerhoff, Sydney.
- 2015c, 'Camden Gas Project FY15 Q4 Groundwater Monitoring Update June 2015', 2268518B-WAT-MEM-002 RevB, dated July 2015, Parsons Brinckerhoff, Sydney.
- 2015d, 'Camden Gas Project FY16 Six-monthly monitoring update October 2015', 2200644A-WAT-MEM-001 RevC, dated November 2015, Parsons Brinckerhoff, Sydney.

- 2015e, 'Camden Gas Project 2014-2015 Groundwater and Surface Water Monitoring Status Report, 2200644A-WAT-RPT-001 RevD, dated October 2015, Parsons Brinckerhoff, Sydney.
- 2016a, 'Camden Gas Project FY16 Six-monthly monitoring update April 2016, 2200644A-WAT-MEM-002 RevB, dated May 2016, Parsons Brinckerhoff, Sydney.

Ross, JB 2014, 'Groundwater resource potential of the Triassic sandstones of the southern Sydney Basin: an improved understanding', Australian Journal of Earth Sciences, vol. 61, no. 3, pp.463-474.

Sydney Catchment Authority (SCA) 2007, 'Appendix 5 - Draft Water Monitoring Guidelines', Submission to Inquiry into the NSW Southern Coalfields July 2007, Sydney Catchment Authority.

Turekian, KK 1968, Oceans. Prentice-Hall.

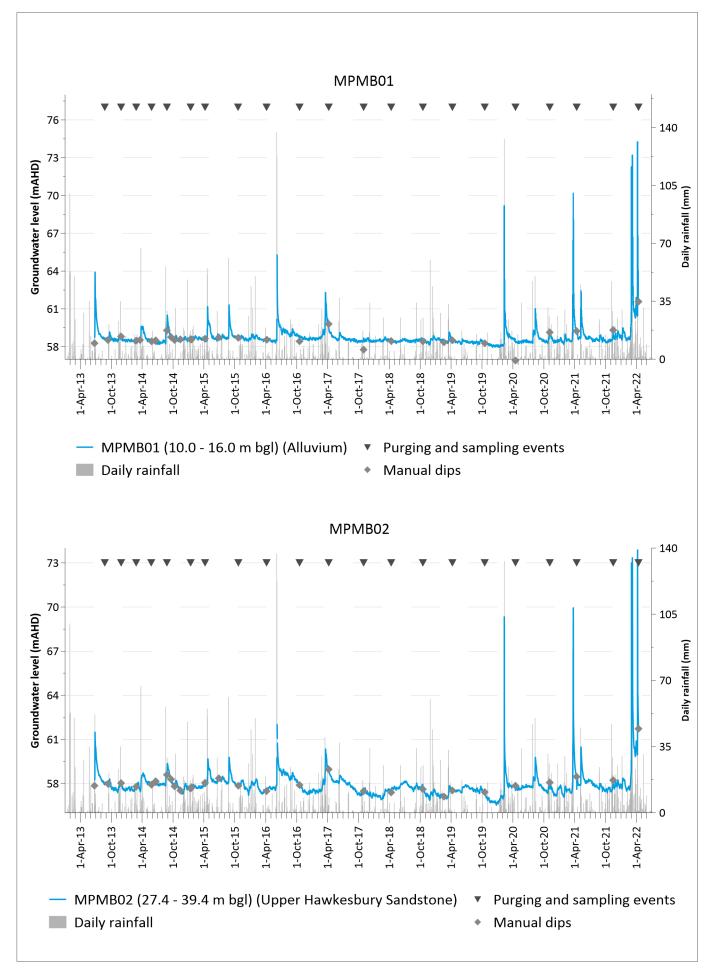
Acidity	Base neutralising capacity.							
Alkalinity	Acid neutralising capacity.							
Alluvium	Unconsolidated sediments (clays, sands, gravels and other materials) deposited by flowing water. Deposits can be made by streams on river beds, floodplains, and alluvial fans.							
Alluvial aquifer	Permeable zones that store and produce groundwater from unconsolidated alluvial sediments Shallow alluvial aquifers are generally unconfined aquifers.							
Ammonia	A compound of nitrogen and hydrogen (NH3) that is a common by-product of animal waste and landfills but is also found naturally in reduced environments. Ammonia readily converts to nitrate in soils and streams.							
Anion	An ion with a negative charge – usually non-metal ions when disassociated and dissolved in water.							
Aquatic ecosystem	The stream channel, lake or estuary bed, water, and (or) biotic communities and the habitat features that occur therein.							
Aquiclude	An impermeable unit that acts as a barrier to the flow of groundwater from one formation to another.							
Aquifer	Rock or sediment in a formation, group of formations, or part of a formation that is saturated and sufficiently permeable to transmit economic quantities of water.							
Aquifer properties	The characteristics of an aquifer that determine its hydraulic behaviour and its response to abstraction.							
Aquifer, confined	An aquifer that is overlain by low permeability strata. The hydraulic conductivity of the confining bed is significantly lower than that of the aquifer.							
Aquifer, semi-confined	An aquifer overlain by a low-permeability layer that permits water to slowly flow through it. During pumping, recharge to the aquifer can occur across the leaky confining layer – also known as a leaky artesian or leaky confined aquifer.							
Aquifer, unconfined	Also known as a water table aquifer. An aquifer in which there are no confining beds between the zone of saturation and the surface. The water table is the upper boundary of an unconfined aquifer.							
Aquitard	A low permeability unit that can store groundwater and also transmit it slowly from one formation to another. Aquitards retard but do not prevent the movement of water to or from adjacent aquifers.							
Australian Height Datum (AHD)	The reference point (very close to mean sea level) for all elevation measurements, and used for correlating depths of aquifers and water levels in bores.							
Beneficial aquifer	An aquifer with a water resource of sufficient quality and quantity to provide either ecosystem protection, raw water for drinking water supply, and agricultural or industrial water.							
Bore	A structure drilled below the surface to obtain water from an aquifer or series of aquifers.							
Boundary	A lateral discontinuity or change in the aquifer resulting in a significant change in hydraulic conductivity, storativity or recharge.							
Cation	An ion with a positive charge – usually metal ions when disassociated and dissolved in water.							

Claystone	A non-fissile rock of sedimentary origin composed primarily of clay-sized particles (less than 0.004 mm).							
Coal	A sedimentary rock derived from the compaction and consolidation of vegetation or swamp deposits to form a fossilised carbonaceous rock.							
Coal seam	A layer of coal within a sedimentary rock sequence.							
Coal seam gas (CSG)	Coal seam gas is a form of natural gas (predominantly methane) that is extracted from coal seams.							
Concentration	The amount or mass of a substance present in a given volume or mass of sample, usually expressed as milligram per litre (water sample) or micrograms per kilogram (sediment sample).							
Conceptual model	A simplified and idealised representation (usually graphical) of the physical hydrogeologic setting and the hydrogeological understanding of the essential flow processes of the system. This includes the identification and description of the geologic and hydrologic framework, media type, hydraulic properties, sources and sinks, and important aquifer flow and surface- groundwater interaction processes.							
Confining layer	Low permeability strata that may be saturated but will not allow water to move through it under natural hydraulic gradients.							
Datalogger	A digital recording instrument that is inserted in monitoring and pumping bores to record pressure measurements and water level variations.							
Dual permeability aquifer	An aquifer in which groundwater flow is through both the primary porosity of the rock matrix and the secondary porosity of fractures and fissures.							
Electrical conductivity (EC)	A measure of a fluid's ability to conduct an electrical current and is an estimation of the total ions dissolved. It is often used as a measure of water salinity.							
Facies	An assemblage or association of mineral, rock, or fossil features reflecting the environment and conditions of origin of the rock. It refers to the appearance and peculiarities that distinguish a rock unit from associated or adjacent units.							
Fault	A fracture in rock along which there has been an observable amount of displacement. Faults are rarely single planar units; normally they occur as parallel to sub-parallel sets of planes along which movement has taken place to a greater or lesser extent. Such sets are called fault or fracture zones.							
Groundwater	The water contained in interconnected pores or fractures located below the water table in the saturated zone.							
Groundwater level	The water level measured in a bore; this may be at or close to the water table in unconfined aquifers, or represent the average piezometric level across the screened interval in confined aquifers.							
Groundwater flow	The movement of water through openings in sediment and rock within the zone of saturation.							
Groundwater system	A system that is hydrogeologically more similar than different in regard to geological province, hydraulic characteristics and water quality, and may consist of one or more geological formations.							
Hydraulic conductivity	The rate at which water of a specified density and kinematic viscosity can move through a permeable medium (notionally equivalent to the permeability of an aquifer to fresh water).							
Hydraulic gradient	The change in total hydraulic head with a change in distance in a given direction.							

Hydraulic head	A specific measurement of water pressure above a datum. It is usually measured as a water surface elevation, expressed in units of length. In an aquifer, it can be calculated from the depth to water in a monitoring bore. The hydraulic head can be used to determine a hydraulic gradient between two or more points.							
Hydrogeology	The study of the interrelationships of geologic materials and processes with water, especially groundwater.							
Hydrology	The study of the occurrence, distribution, and chemistry of all surface waters.							
lon	An ion is an atom or molecule where the total number of electrons is not equal to the total number of protons, giving it a net positive or negative electrical charge.							
Limit or reporting (LOR)	The concentration below which a particular analytical method cannot determine, with a high degree of certainty, a concentration.							
Lithology	The study of rocks and their depositional or formational environment on a large specimen or outcrop scale.							
Major ions	Constituents commonly present in concentrations exceeding 10 milligram per litre. Dissolved cations generally are calcium, magnesium, sodium, and potassium; the major anions are sulphate, chloride, fluoride, nitrate, and those contributing to alkalinity, most generally assumed to be bicarbonate and carbonate.							
Methane (CH ₄)	An odourless, colourless, flammable gas, which is the major constituent of natural gas. It is used as a fuel and is an important source of hydrogen and a wide variety of organic compounds.							
MicroSiemens per centimetre (µS/cm)	A measure of water salinity commonly referred to as EC (see also electrical conductivity). Most commonly measured in the field with calibrated field meters.							
Monitoring bore	A non-pumping bore, is generally of small diameter that is used to measure the elevation of the water table and/or water quality. Bores generally have a short well screen against a single aquifer through which water can enter.							
Monitoring period	Refers to data collected since commencement of monitoring or for a specified time.							
Monitoring year	Refers to data collected between July 2021 and June 2022.							
Normal faulting	Where the fault plane is vertical or dips towards the downthrow side of a fault.							
Oxidising conditions	Conditions in which a species loses electrons and is present in oxidised form.							
Permeability	The property or capacity of a porous rock, sediment, clay or soil to transmit a fluid. It is a measure of the relative ease of fluid flow under unequal pressure. The hydraulic conductivity is the permeability of a material for water at the prevailing temperature.							
Permeable material	Material that permits water to move through it at perceptible rates under the hydraulic gradients normally present.							
Permian	The last period of the Palaeozoic era that finished approximately 252 million years before present.							
pH Potential of Hydrogen; the logarithm of the reciprocal of hydrogen-ion concentrati atoms per litre; provides a measure on a scale from 0 to 14 of the acidity or alkalin solution (where 7 is neutral, greater than 7 is alkaline and less than 7 is acidic).								
Porosity	The proportion of open space within an aquifer, comprised of intergranular space, pores, vesicles and fractures.							

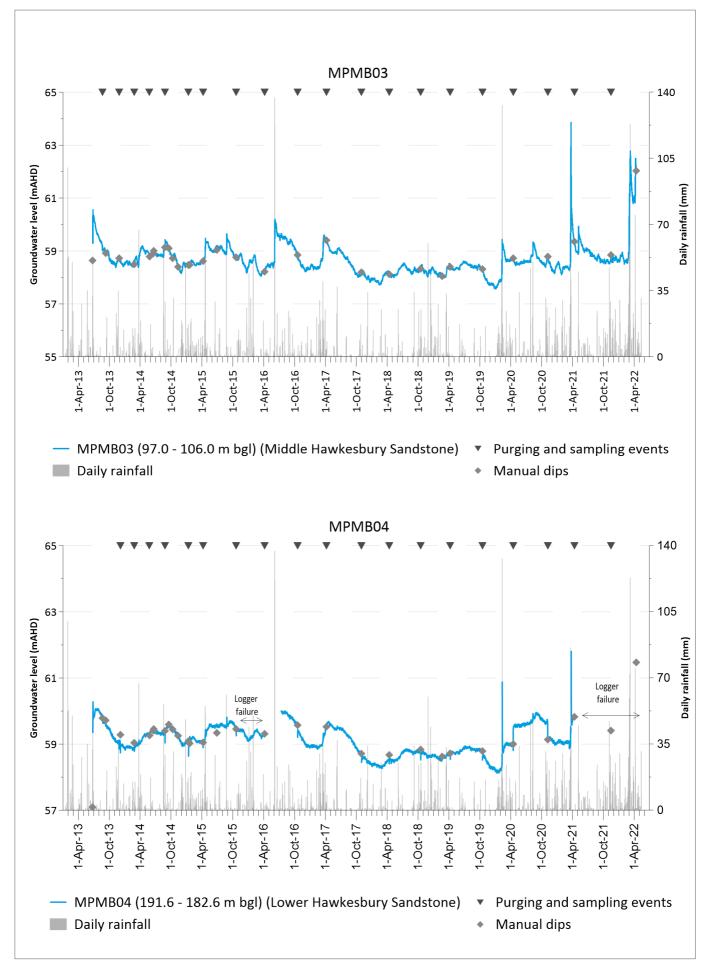
Porosity, secondary	The porosity caused by fractures or weathering in a rock or sediment after it has been formed
Quaternary	The most recent geological period extending from approximately 2.6 million years ago to the present day.
Quality assurance	Evaluation of quality-control data to allow quantitative determination of the quality of chemical data collected during a study. Techniques used to collect, process, and analyse water samples are evaluated.
Recharge	The process which replenishes groundwater, usually by rainfall infiltrating from the ground surface to the water table and by river water reaching the water table or exposed aquifers. The addition of water to an aquifer.
Recharge area	A geographic area that directly receives infiltrated water from surface and in which there are downward components of hydraulic head in the aquifer. Recharge generally moves downwarc from the water table into the deeper parts of an aquifer then moves laterally and vertically to recharge other parts of the aquifer or deeper aquifer zones.
Recovery	The difference between the observed water level during the recovery period after cessation or pumping and the water level measured immediately before pumping stopped.
Redox potential (ORP or Eh)	The redox potential is a measure (in volts) of the affinity of a substance for electrons – its electronegativity – compared with hydrogen (which is set at 0). Substances more strongly electronegative than (ie capable of oxidising) hydrogen have positive redox potentials. Substances less electronegative than (ie capable of reducing) hydrogen have negative redox potentials. Also known as oxidation-reduction potential and Eh.
Redox reaction	Redox reactions, or oxidation-reduction reactions, are a family of reactions that are concerned with the transfer of electrons between species, and are mediated by bacterial catalysis. Reduction and oxidation processes exert an important control on the distribution of species like O2, Fe2+, H2S and CH4 etc. in groundwater.
Salinity	The concentration of dissolved salts in water, usually expressed in EC units or milligrams of total dissolved solids per litre (mg/L TDS).
Salinity classification	Fresh water quality – water with a salinity <800 μS/cm.
	Marginal water quality – water that is more saline than freshwater and generally waters between 800 and 1,600 $\mu\text{S/cm}.$
	Brackish quality – water that is more saline than freshwater and generally waters between 1,600 and 4,800 $\mu\text{S/cm}.$
	Slightly saline quality – water that is more saline than brackish water and generally waters with a salinity between 4,800 and 10,000 $\mu\text{S/cm}.$
	Moderately saline quality – water that is more saline than slightly saline water and generally waters between 10,000 and 20,000 $\mu\text{S/cm}.$
	Saline quality – water that is almost as saline as seawater and generally waters with a salinity greater than 20,000 $\mu S/cm.$
	Seawater quality – water that is generally around 55,000 μ S/cm.
	(Australian Water Resources Council 1988)
Sandstone	Sandstone is a sedimentary rock composed mainly of sand-sized minerals or rock grains (predominantly quartz).

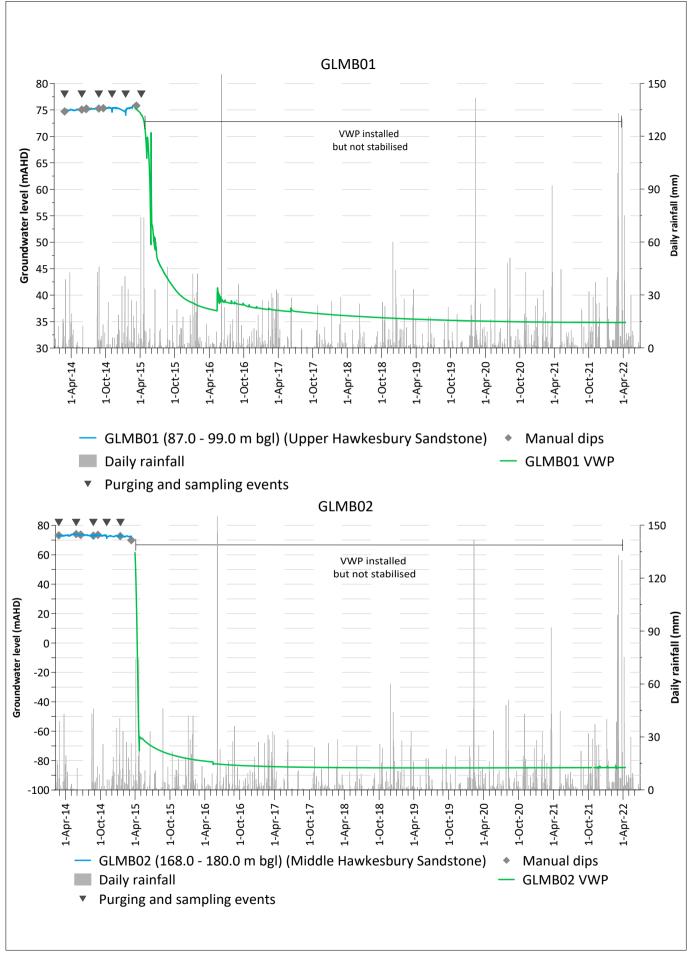
Screen	A type of bore lining or casing of special construction, with apertures designed to permit the flow of water into a bore while preventing the entry of aquifer or filter pack material.						
	now of water into a bore while preventing the entry of aquifer of filter pack material.						
Sedimentary rock aquifer	These occur in consolidated sediments such as porous sandstones and conglomerates, in						
	which water is stored in the intergranular pores, and limestone, in which water is stored in						
	solution cavities and joints. These aquifers are generally located in sedimentary basins that are						
	continuous over large areas and may be tens or hundreds of metres thick. In terms of quantity,						
	they contain the largest volumes of groundwater.						
Shale	A laminated sedimentary rock in which the constituent particles are predominantly of clay size.						
Siltstone	A fine-grained rock of sedimentary origin composed mainly of silt-sized particles (0.004 to 0.06						
	mm).						
Standing water level (SWL)	The height to which groundwater rises in a bore after it is drilled and completed, and after a						
0 ,	period of pumping when levels return to natural atmospheric or confined pressure levels.						
Stratigraphy	The depositional order of sedimentary rocks in layers.						
Surface water-groundwater	This occurs in two ways: (1) streams gain water from groundwater through the streambed						
interaction	when the elevation of the water table adjacent to the streambed is greater than the water						
	level in the stream; and (2) streams lose water to groundwater through streambeds when the						
	elevation of the water table is lower than the water level in the stream.						
Tertiary	Geologic time at the beginning of the Cainozoic era, 65 to 2.6 million years ago, after the						
	Cretaceous and before the Quaternary.						
Total Dissolved Solids (TDS)	A measure of the salinity of water, usually expressed in milligrams per litre (mg/L). See also EC.						
Water quality	Term used to describe the chemical, physical, and biological characteristics of water, usually in						
	respect to its suitability for a particular purpose.						
Water quality data	Chemical, biological, and physical measurements or observations of the characteristics of						
	surface and ground waters, atmospheric deposition, potable water, treated effluents, and						
	waste water and of the immediate environment in which the water exists.						
Well	Pertaining to a gas exploration well or gas production well.						
	· · · · · · · · · · · · · · · · · · ·						


Abbreviations

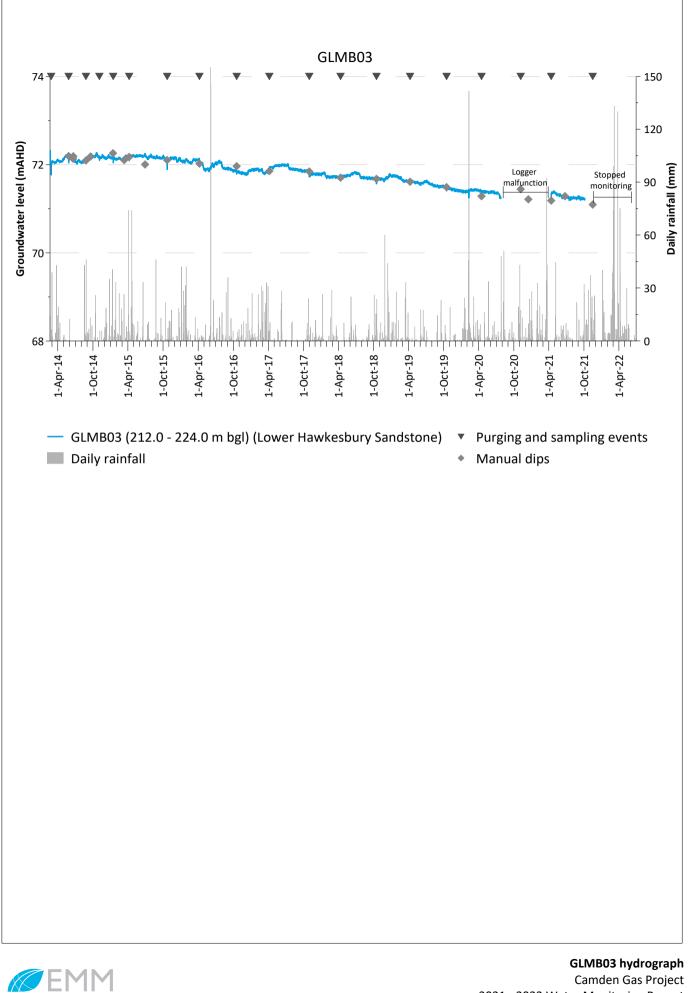
AGL	AGL Upstream Investments Pty Ltd
BoM	Bureau of Meteorology
BTEX	Benzene, toluene, ethyl benzene and xylenes
CDFM	Cumulative deviation from mean
CGP	Camden Gas Project
CSG	Coal seam gas
DO	Dissolved oxygen
EC	Electrical conductivity
LOR	Limit of reporting
ORP	Oxidation reduction potential
РАН	Polycyclic aromatic hydrocarbons
SCA	Sydney Catchment Authority
TDS	Total dissolved solids
ТРН	Total petroleum hydrocarbons
VWP	Vibrating wire piezometer

°C	degrees Celsius
L/s	litres per second
m	metres
mAHD	metres Australian Height Datum
mbgl	metres below ground level
m/d	metres per day
mg/L	milligrams per litre
μg/L	micrograms per litre
mV	millivolt
μS/cm	microSiemens per centimetre


Appendix A Groundwater hydrographs



MPMB01 and MPMB02 hydrographs Camden Gas Project 2021-2022 Water Monitoring Report Figure A.1



EMM

MPMB03 and MPMB04 hydrographs Camden Gas Project 2021 - 2022 Water Monitoring Report Figure A.2

Appendix B Water quality summary table

Analytical results – Analytical results – alkalinity Analytical results – alkalinity Alkalin Alkali	pH (field) pH (field) pH (lab)*** Electrical conductivity (field) Electrical Conductivity @ 25°C Temperature (field) Dissolved oxygen (field) Dissolved oxygen (field) Total dissolved solids (field) Total Dissolved Solids @180°C Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Comonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromine (filtered) Chloride Fluoride Bromine (filtered) Chloride Bromine (filtered) Chloride Bromine (filtered) Chloride Bromine (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	Unit pH units pH units uS/cm μ S/cm °C mg/L	Site ID Date Lab report number Limit of reporting (LOR) Limit of reporting I	24/06/2021	MB03 15/11/2021 ES2141417 ES2141417 - 7.70 - 4,780 - 4,780 - 3,010 71 - 1,710 <1 1,710 2.4 <0.01 <0.01 <0.01 0.09	15/11/2021 ES2141417 ES2141417 0 5.75 - 736 - 736 - 736 - 436 11 - 33 <1 33 <10 33 <0.01 0.48	MB01 13/04/2022 ES2213055 5.39 6.12 743 708 24.8 7.16 87 481 434 283 129 21 <1	15/11/2021 ES2141417 - 6.71 - 816 - 456 15 - 177	VB02 13/04/2022 ES2213055 ES2213055 6.56 6.99 307 300 24.8 4.01 45.2 200 150 69 46	15/11/2021 ES2141417 - 7.84 - 1,050 - - - - 605	MB03 22/04/2022 ES2213939 - 7.35 - 196 - 196 - - 196 - - 196 - - 196 - - 196 - - 196 - - 196 - - - - - - - - - - - - -	15/11/2021 ES2141417 - 8.91 - 387 - - 387 - - - - -	MB04 22/04/2022 ES2213939 - 9.10 - 216 - 216 - - - - - - - - - - - - -	for fresh water ecosystem 95%* 6.5 - 8.0** 6.5 - 8.0** 125 - 2,200** 80 - 110**	15/11/2021 ES2141417 - 6.85 - 355 - 355 - - - - - - - - - - - - -	NR 13/04/202 ES2213055 6.11 6.83 140 113 19.9 7.38
General parameters General param	pH (field) pH (field) pH (lab)*** Electrical conductivity (field) Electrical Conductivity @ 25°C Temperature (field) Dissolved oxygen (field) Dissolved oxygen (field) Total dissolved solids (field) Total Dissolved Solids @180°C Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Comonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromine (filtered) Chloride Fluoride Bromine (filtered) Chloride Bromine (filtered) Chloride Bromine (filtered) Chloride Bromine (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	pH units pH units uS/cm °C mg/L % mg/L	Limit of reporting (LOR)	- 7.58 - 5,260 - - 3,060 89 - 2,240 <1 <1 2,240 <1 <1 2,240 <1 <1 2,240 <1 <1 2,240 <1 <1 2,240 <1 <1 2,240 <1 <1 2,240 <1 <1 2,240 <1 0,01 <0.01 <0.01 <2	- 7.70 - 4,780 - - - 3,010 71 - 3,010 71 - 1,710 <1 (1) (1) (1) (2,4) <1 1,710 2,4 <0.01 <0.01 <0.01	5.75 - 736 - - - - - 436 11 - - 33 < 11 - 33 < 1 1 1 - 33 < <1 <1 33	5.39 6.12 743 708 24.8 7.16 87 481 434 283 129 21 <1 <1 <1	- 6.71 - 816 - - - - 456 15 - 177	6.56 6.99 307 300 24.8 4.01 45.2 200 150 69	- 7.84 - 1,050 - - - - - 605	- 7.35 - 196 - - - - -	- 8.91 - 387 - - - - -	- 9.10 - 216 - - - -	6.5 - 8.0** 125 - 2,200**	- 6.85 - 355 - - - - - -	6.11 6.83 140 113 19.9 7.38
eneral parameters eneral param	pH (field) pH (field) pH (lab)*** Electrical conductivity (field) Electrical Conductivity @ 25°C Temperature (field) Dissolved oxygen (field) Dissolved oxygen (field) Total dissolved solids (field) Total Dissolved Solids @180°C Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Comonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromine (filtered) Chloride Fluoride Bromine (filtered) Chloride Bromine (filtered) Chloride Bromine (filtered) Chloride Bromine (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	pH units pH units uS/cm °C mg/L % mg/L	(LOR)	7.58 - 5,260 - - 3,060 89 - 2,240 <1 2,240 <1 2,240 <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 2	7.70 - 4,780 - - - 3,010 71 - 1,710 <1 - 1,710 <1 <1 <1 1,710 2.4 <0.01 <0.01 <0.01	- 736 - - - - 436 11 - - 33 <1 - 33 <1 <1 <1 33 <0.01	6.12 743 708 24.8 7.16 87 481 434 283 129 21 <1	6.71 - 816 - - - 456 15 - 177	6.99 307 300 24.8 4.01 45.2 200 150 69	7.84 - 1,050 - - - - 605	7.35 - 196 - - - -	8.91 - 387 - - - -	9.10 - 216 - - - -	6.5 - 8.0** 125 - 2,200**	6.85 - 355 - - - - - -	6.83 140 113 19.9 7.38
alytical results – calinity Alkalin alytical results – calinity Alkalin alytical results – trrients Alkalin alytical results – trrients Alkalin alytical results – trrients Alkalin alytical results – trrients Alkalin alkalin alytical results – trrients Alkalin alkalin alkalin Alkalin Boronic Boronic Boronic Boronic Boronic Barium Beryllin Boron i Uraniu Antimo Cadmi Barium Beryllin Boron i Uraniu Antimo Cadmi Alumin Antimo Cadmi Barium Beryllin Boron i Uraniu Antimo Cadmi Nolybe Chromi Cobalt Copper Stronti Iron (fii Lead (fi Manga Mercul Seleniu Vanadi Zinc (fii ron alkanes Alumin Antimo Cadmi Barium Beryllin Boron i Uraniu Antimo Cadmi Nolybe Chromi Cobalt Copper Stronti Iron (fii Lead (fi Manga Mercul Seleniu Vanadi Zinc (fii Vanadi Zinc (fii Vana	pH (lab)*** Electrical conductivity (field) Electrical Conductivity @ 25°C Temperature (field) Dissolved oxygen (field) Dissolved oxygen (field) Total dissolved solids (field) Total dissolved Solids @180°C Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Comonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromine (filtered) Chloride Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Cations Total Sulfate as SO ₄ - Turbidimetric	pH units uS/cm μS/cm °C mg/L % mg/L	5 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.004 1 1 0.004 1 1 0.1 10	7.58 - 5,260 - - 3,060 89 - 2,240 <1	7.70 - 4,780 - - - 3,010 71 - 1,710 <1 - 1,710 <1 <1 <1 1,710 2.4 <0.01 <0.01 <0.01	- 736 - - - - 436 11 - - 33 <1 - 33 <1 <1 <1 33 <0.01	6.12 743 708 24.8 7.16 87 481 434 283 129 21 <1	6.71 - 816 - - - 456 15 - 177	6.99 307 300 24.8 4.01 45.2 200 150 69	7.84 - 1,050 - - - - 605	7.35 - 196 - - - -	8.91 - 387 - - - -	9.10 - 216 - - - -	6.5 - 8.0** 125 - 2,200**	6.85 - 355 - - - - - -	6.83 140 113 19.9 7.38
alytical results – calinity Total d Total D Suspen Redox Alkalin Calciun Chlorid Bromid Calciun Chlorid Bromid Calciun Chlorid Brom	Electrical conductivity (field) Electrical Conductivity @ 25°C Temperature (field) Dissolved oxygen (field) Total dissolved solids (field) Total dissolved solids @180°C Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromine (filtered) Chloride Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	uS/cm µS/cm °C mg/L	5 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.004 1 1 0.004 1 1 0.1 10	- 5,260 - - - 3,060 89 - 2,240 <1 <1 2,240 <1 2,240 3.37 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 2	- 4,780 - - - 3,010 71 - 3,010 71 - 1,710 <1 <1 <1 1,710 2.4 <0.01 <0.01 <0.01	- 736 - - - - 436 11 - - 33 <1 - 33 <1 <1 <1 33 <0.01	743 708 24.8 7.16 87 481 434 283 129 21 <1	- 816 - - - - 456 15 - 177	307 300 24.8 4.01 45.2 200 150 69	- 1,050 - - - - 605	- 196 - - - -	- 387 - - - -	- 216 - - - -	125 - 2,200**	- 355 - - - - -	140 113 19.9 7.38
alytical results – calinity Alkalin alytical results – calinity Alkalin alytical results – trients Nitrite Nit	Temperature (field) Dissolved oxygen (field) Dissolved oxygen (field) Total dissolved solids (field) Total Dissolved Solids @180°C Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	°C mg/L % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	5 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.004 1 1 0.004 1 1 0.1 10	- - - 3,060 89 - 2,240 <1 <1 2,240 3.37 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 2	- - - 3,010 71 - 1,710 <1 <1 <1 <1 1,710 2.4 <0.01 <0.01 <0.01	- - - - - - - - - - - - - - - - - - -	24.8 7.16 87 481 434 283 129 21 <1 <1 <1	- - - - 456 15 - 177	24.8 4.01 45.2 200 150 69	- - - - 605	- - - -	- - - -	- - -	80 - 110**	- - - -	19.9 7.38
alytical results – calinity Alkalin alytical results – calinity Alkalin alytical results – trients Alkalin alytical results – trients Alkalin alytical results – trients Alkalin alytical results – trients Alkalin calcium phosph TOC organics Cyanid Calcium Chlorid Fluorid Bromin Reactiv Sodium Magne Potassi Anions Ionic B Cations Sulfate (filteren ganics Alumin Arsenic Barium Beryllin Boron (Uraniu Antimoc Cadmin Arsenic Barium Beryllin Boron (Uraniu Antimoc Cadmin Arsenic Barium Beryllin Boron (Uraniu Antimoc Cadmin Molybo Chromi Cobalt Copper Stronti Iron (fil Lead (fi Manga Mercur Nickel I Seleniu Vanadi Zinc (fil ron adi Cadmin Beryllin Boron (Uraniu Antimoc Cadmin Molybo Chromi Cobalt Copper Stronti Iron (fil Lead (fi Manga Mercur Nickel I Seleniu Vanadi Zinc (fil Vanadi Zinc (fil Seleniu Vanadi Zinc (fil Seleniu Nickel I Seleniu Nickel I Seleniu Sel	Dissolved oxygen (field) Dissolved oxygen (field) Total dissolved solids (field) Total Dissolved Solids @180°C Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (total) as CaCO ₃ Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	% mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	5 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.004 1 1 0.004 1 1 0.1 10	- - 3,060 89 - 2,240 <1 <1 2,240 3.37 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 2	- - 3,010 71 - 1,710 <1 <1 <1 1,710 2.4 <0.01 <0.01 <0.01	- - 436 11 - 33 <1 <1 <1 <1 33 <0.01	87 481 434 283 129 21 <1	- - 456 15 - 177	45.2 200 150 69	- - 605				80 - 110**		7.3
alytical results – calinity Alkalin alytical results – trients Alkalin Nitrite Nitrate Reactiv Sodium Magne Potassi Anions Ionic B Cations Solved metals Alumin Beryllin Boron (Uraniu Antimo Cobalt Copper Stronti Iron (fil Lead (f Manga Mercur Nickel (Seleniu Vanadi Zinc (fil promal alkanes Anions Anions Anions Alumin Beryllin Boron (Uraniu Antimo Cobalt Copper Stronti Iron (fil Lead (f Manga Mercur Nickel (Seleniu Vanadi Zinc (fil Propan	Total dissolved solids (field) Total Dissolved Solids @180°C Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (total) as CaCO ₃ Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Bromide Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	5 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.004 1 1 0.004 1 1 0.1 10	- 3,060 89 - 2,240 <1 <1 2,240 3.37 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 2	- 3,010 71 - 1,710 <1 <1 <1 1,710 2.4 <0.01 <0.01 <0.01	436 11 - 33 <1 <1 <1 33 <0.01	481 434 283 129 21 <1 <1 <1	- 456 15 - 177	200 150 69	- 605	-			80 - 110**	-	83.4
rganics Methan solved metals Alian alytical results – itrients Alian nalytical results – itrients Alian Nitrite Reactive Phosph TOC organics Calcium Bromin Reactive Sodium Magne Potassi Anions Ionic Bi Cations Sulfate (filtere rganics Alian solved metals Alian Anions Ionic Bi Cations Sulfate (filtere rganics Alian Barium Berylliu Boron (Uraniu Antimo Cadmin Molybe Choom Cobalt Copper Stronti Ion (fi Lead (fi Mangau Mercu Nickel I Seleniu Vanadi Zinc (fil Seleniu Vanadi Zinc (fil Seleniu Vanadi Zin Seleniu Vanadi Zin Seleniu Vanadi Zin Seleniu Vanadi Zin Seleniu Vanadi Zin Seleniu Vanadi Zin Seleniu Seleniu Vanadi Zin Seleniu Vanadi Zin Seleniu Seleniu Vanadi Zin Seleniu Seleniu Seleniu Vanadi Zin Seleniu Seleniu Seleniu Seleniu Vanadi Zin Seleni	Suspended Solids (SS) Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (total) as CaCO ₃ Alkalinity (total) as CaCO ₃ Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mV mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	5 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.004 1 1 0.004 1 1 0.1 10	89 - 2,240 <1	71 - 1,710 <1 <1 <1 1,710 2.4 <0.01 <0.01 <0.01	11 - 33 <1 <1 <1 33 <0.01	283 129 21 <1 <1 <1	15 - 177	69	_	140	220	-		255	91
Redoxhalytical results - kalinityAlkalin Alkalin Alkalin Alkalin halkali	Redox (field) Alkalinity (Bicarbonate as CaCO ₃) Alkalinity (Carbonate as CaCO ₃) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (total) as CaCO ₃ Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mV mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.01 0.01 0.01 0.01 1 0.004 1 1 1 0.1 10	- 2,240 <1 <1 2,240 3.37 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 2	- 1,710 <1 <1 1,710 2.4 <0.01 <0.01 <0.01	- 33 <1 <1 <1 33 <0.01	129 21 <1 <1	- 177		12	74	228 8	137 40		255 14	69
kalinity Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Alkalin Nitrite Nitrite Reactiv Phosph TOC Organics Organics Calcium Chlorid Fluorid Bromic Bromic Bromic Bormic Bormic Bormic Bromic Caline Cations Sulfate (filtere frue Solved metals Alumin Arsenic Barium Beryllin Boron Uraniu Antimo Cobalt Copper Stromi Iron (fi Lead (f Manga Mercu Nickel Seleniu Vanadi Zinc (fil bormal alkanes Butene Propan Propen romatic drocarbons Alume Alume Butene Propan Propen Total B Xylene	Alkalinity (Carbonate as CaCO ₃) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (total) as CaCO ₃ Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.01 0.01 0.01 0.01 1 0.004 1 1 1 0.1 10	<1 <1 2,240 3.37 <0.01 <0.01 <0.01 <0.05 <0.01 2	<1 <1 1,710 2.4 <0.01 <0.01 <0.01	<1 <1 33 <0.01	<1 <1			-	-	-	-		-	55
Alkalin halytical results – utrients Alkalin Nitrite Nitrite Reactiv Phosph TOC organics Calcium Chlorid Bromid Bromid Bromid Bromid Bromid Anions Ionic Br Sodium Magne Potassi Anions Sulfate (filtere rganics Alumin Sulfate (filtere rganics Alumin Barium Barium Barium Barium Barium Barium Barium Cadions Catons Catons Catons Catons Catons Sulfate (filtere Torn (fil Ethene Ssolved metals Alumin Arsenid Barium Barium Barium Cobalt Cobalt Copper Stronti Iron (fil Lead (f Manga Molybe Chromi Cobalt	Alkalinity (total) as CaCO ₃ Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.01 0.01 0.01 0.01 1 0.004 1 1 1 0.1 10	2,240 3.37 <0.01 <0.01 <0.01 <0.05 <0.01 2	1,710 2.4 <0.01 <0.01 <0.01	33 <0.01		<1	86 <1	498 <1	89 <1	80 54	67 19		85 <1	17
nalytical results – utrients Ammon Nitrite Nitrite Nitrite Reactiv Phosph TOC organics Calcium Chlorid Bromid Bromid Bromid Bromid Bromid Anions Ionic Br Cations Sodium Magne Potassi Anions Sulfate (filtere rganics Ametals Solved metals Alumin Barium Barium Barium Barium Barium Barium Barium Cadinis Catons Sulfate (filtere Ton (fil Ethene Solved metals Alumin Cobalt Copper Stronti Iron (fil Lead (f Manga Molybe Chromi Cobalt Cobalt Copper Stronti Iron (fil Lead (f Manga Molybe Chromi Cobalt Copper Stronti Iron (fil Lead (f Manga Mercu Nickel (Seleniu Vanadi Zinc (fil Copper Stronti Iron (fil Lead (f Manga Mercu Nickel (Seleniu Vanadi Zinc (fil Seleniu Nickel (Seleniu Nickel (Ammonia as N Nitrite + Nitrate as N Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.01 0.01 0.01 0.01 1 0.004 1 1 1 0.1 10	3.37 <0.01 <0.01 <0.01 <0.05 <0.01 2	2.4 <0.01 <0.01 <0.01	<0.01	21	<1	<1	<1	<1	<1	<1		<1	<1
rganics (Gamma alkanes) (Gamma	Nitrite (as N) Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L mg/L mg/L mg/L mg/L μg/L μg/L mg/L mg/L mg/L mg/L mg/L	0.01 0.01 0.01 1 0.004 1 1 1 0.1 10	<0.01 <0.01 <0.05 <0.01 2	<0.01 <0.01	0.40	0.02	177 0.09	86	498 0.89	89 0.41	134 0.48	86	0.02*	85	0.0
rganics (Cations) solved metals Alumin Barium Bariu	Nitrate (as N) Reactive Phosphorus as P Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L mg/L mg/L mg/L mg/L μg/L mg/L mg/L mg/L mg/L mg/L	0.01 0.01 1 0.004 1 1 1 0.1 10	<0.01 <0.05 <0.01 2	<0.01	0.48	0.66 <0.01	<0.01 <0.01	0.02 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		0.28 <0.01	0.2
proganics organics or	Phosphorus TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L mg/L mg/L μg/L μg/L mg/L mg/L mg/L mg/L	0.01 1 0.004 1 1 0.1 10	<0.01 2	0.09	0.47	0.66	<0.01	0.02	<0.01	<0.01	<0.01	<0.01		0.28	0.2
organics Cyanid Calcium Chlorid Fluorid Bromic Bromic Bromic Sodium Magne Potassi Anions Ionic Bi Cations Ionic Bi Cations Sulfate (filtere ganics Methal Ethane Ethene ssolved metals Alumin Arsenic Barium Beryllit Boron (Uraniu Antimo Cadmit Molybo Chromi Cobalt Copper Stronti Iron (fi Lead (f Manga Mercu Nickel Seleniu Vanadi Zinc (fil rmal alkanes Ethylbe Toluen Total B Aylene Xylene Xylene Ethylbe Toluen Total B Xylene Xy	TOC Cyanide Total Calcium (filtered) Chloride Fluoride Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L mg/L μg/L μg/L mg/L mg/L mg/L mg/L	1 0.004 1 1 0.1 10	2	0.09	<0.01	<0.01	0.01	<0.01	<0.01 0.02	0.01	<0.01 <0.01	<0.01	0.02*	0.01	<0.0
Calcium Chlorid Fluorid Bromic Bromic Bromic Sodium Magne Potassi Anions Ionic Bi Cations Sulfate (filtere ganics Metha Ethane Ethene solved metals Alumin Arsenic Barium Berylliu Boron Uraniu Antimo Cadmin Molyba Chromi Cobalt Copper Stronti Iron (fi Lead (f Manga Mercu Nickel Seleniu Vanadi Zinc (fil rmal alkanes Butane Propan Propen omatic drocarbons Ethylba Toluen Total B Xylene Xylene Ethylba Chromi	Calcium (filtered) Chloride Fluoride Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L mg/L μg/L mg/L mg/L mg/L mg/L	1 1 0.1 10	< 0.004	10	<1	<1	<1	6	<1	10	4	7		10	7
 Chlorid Fluorid Bromid Bromid Bromid Bromid Bromid Bromid Bromid Bromid Sodium Magne Potassi Anions Ionic B Cations Sulfate (filtere ganics Methat Ethane Ethene ssolved metals Alumin Arsenid Barium Beryllit Boron (Uraniu Antimo Cadmid Beryllit Boron (Uraniu Beryllit Boron (Uraniu Antimo Cadmid Cadmid Beryllit Beryllit Beryllit Beryllit Beryllit Cobalt Copper Stronti Iron (fi Lead (fi Manga Mercur<td>Chloride Fluoride Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO₄ - Turbidimetric</td><td>mg/L mg/L μg/L mg/L mg/L mg/L mg/L</td><td>10</td><td>193</td><td><0.004 275</td><td><0.004</td><td><0.004</td><td><0.004</td><td><0.004</td><td><0.004 89</td><td><0.004</td><td><0.004</td><td><0.004</td><td>0.007</td><td><0.004 11</td><td><0.0</td>	Chloride Fluoride Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO ₄ - Turbidimetric	mg/L mg/L μg/L mg/L mg/L mg/L mg/L	10	193	<0.004 275	<0.004	<0.004	<0.004	<0.004	<0.004 89	<0.004	<0.004	<0.004	0.007	<0.004 11	<0.0
enolic compounds enolic	Bromide Bromine (filtered) Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO4 - Turbidimetric	μg/L μg/L mg/L mg/L mg/L mg/L	10	651	777	218	214	168	38	74	22	29	29		52	16
enolic compounds enolic	Reactive Silica Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO4 - Turbidimetric	μg/L mg/L mg/L mg/L mg/L	100	0.1	<0.1	<0.1 356	<0.1 401	0.1 242	<0.1 88	0.1	<0.1 49	0.2	0.1 49		0.1	<0. 50
ssolved metals ssolved metals anions anion begin{tabular}{lllllllllllllllllllllllllllllllllll	Sodium (filtered) Magnesium (filtered) Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO4 - Turbidimetric	mg/L mg/L mg/L	0.05	1,500	1,700	400	500	300	100	100	<100	<100	<100		100	<10
enolic compounds enolic	Potassium (filtered) Anions Total Ionic Balance Cations Total Sulfate as SO4 - Turbidimetric	mg/L	0.05	27.5 1,050	10.5 836	16.4 90	16 92	11.3 76	6.35 30	8.38 106	4.29 15	2.13 73	1.92 39		4.97 48	4.3
Anions Ionic B Cations Sulfate (filtere ganics Methan Ethane Essolved metals Alumin Arsenic Barium Beryllit Boron (Uraniu Antimo Cadmit Molybo Chromi Cobalt Copper Stronti Iron (fil Lead (f Manga Mercur Nickel Seleniu Vanadi Zinc (fil prmal alkanes Butane Propan Omatic drocarbons Ethylbe Toluen Total B Xylene Xylene Xylene Xylene Xylene	Anions Total Ionic Balance Cations Total Sulfate as SO4 - Turbidimetric		1	164 38	69 32	16	17	30 3	12 3	22 13	10 5	2	2		8	3
CationsSulfateganicsMethanEthanessolved metalsAluminArsenicBariumBeryllinBoron (UraniuAntimoCadminMolybeChromiCobaltCobaltCobaltCobaltCobaltCopperStrontiIron (fiiLead (fiMangaMercurNickel (SeleniuVanadiZinc (fii)omaticdrocarbonsenolic compounds2,4,6-T2,4-Din2,4-Din	Cations Total Sulfate as SO₄ - Turbidimetric	%	0.01	63.1	56.1	6.87	6.54	8.4	2.96	12	2.4	3.5	2.58		3.46	0.9
rganics Methan Ethane Ethane Ethane Ethane Ethane Ethane Ethane Ethane Ethane Ethane Barium Barium Berylliu Boron Uraniu Antimo Cadmiu Molybo Chromi Cobalt Copper Stronti Iron (fi Lead (f Manga Mercur Nickel Seleniu Vanadi Zinc (fil Dormal alkanes Butane Butane Propan Propan Propan Propan Propan Propan Propan Dronatic rdrocarbons Ethylbo Toluen Toluen Toluen Xylene Xylene Xylene Xylene	Sulfate as SO4 - Turbidimetric	meq/L	0.01	5.01 69.8	0.44 56.6	9.7 5.66	5.35 5.88	4.97 7.61	- 2.92	3.63 11.2	- 2.3	3.09 3.72	- 2.16		0.12 3.45	- 1.0
rganics Methan Ethane Ethane Ethane Ethane Ethane Ethane Ethane Barium Barium Berylliu Boron Uraniu Antimo Cadmiu Molybo Chromi Cobalt Copper Stronti Iron (fii Lead (f Manga Mercur Nickel Seleniu Vanadi Zinc (fii Dormal alkanes Butane Propan Propan Propan Propan Omatic rdrocarbons Ethylbo Toluen Total B Xylene Xylene Xylene Xylene Xylene	unaren i	mg/L	1	<1	<10	3	4	6	8	<1	<1	<1	2		14	6
enolic compounds solved metals Alumin Arsenic Barium Berylliu Boron Uraniu Antimo Cadmiu Molybe Chromi Cobalt Copper Stronti Iron (fii Lead (fi Manga Mercur Nickel Seleniu Vanadi Zinc (fii Dormal alkanes Butane Propan Propen omatic rdrocarbons Propen Stylene Xyle	filtered) Methane	μg/L	10	27	13.2	0.013	<0.01	0.348	0.083	45.3	11	44.4	12.1	0	<0.01	0.1
ssolved metals Alumin Arsenic Barium Berylliu Boron Uraniu Antimo Cadmiu Molybo Chromi Cobalt	Ethane	μg/L μg/L	10 10	133 <10	66 <10	<10 <10	<10 <10	<10 <10	<10	<10 <10	<10 <10	<10 <10	<10 <10		<10 <10	<1
enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds 2,4,5-T 2,4,6-T 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic	Aluminium (filtered)	mg/L	0.01	<0.01	<0.01	0.01	0.03	<0.01	<10 0.1	<0.01	0.23	<0.01	0.25	0.055	0.02	0.2
omatic drocarbons omatic drocarbons enolic compounds enolic compounds enolic compounds enolic compounds 2,4,5-T 2,4,6-T 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic	· · ·	mg/L mg/L	0.001	0.021 42.7	0.007	<0.001 0.506	<0.001 0.436	0.006	0.005	0.005	0.004 0.179	<0.001 0.552	<0.001 0.295		0.001	<0.0
enolic compounds enolic	Beryllium (filtered)	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.0
Antimo Cadmiu Molybo Chromi Cobalt Copper Stronti Iron (fil Lead (f Manga Mercur Nickel Seleniu Vanadi Zinc (fil rrmal alkanes Domatic drocarbons Domatic drocarbons Ethylbo Toluen Total B Xylene Xylene Xylene Xylene Z,4,5-T 2,4,6-T 2,4-Dic 2,4-Dic	· · ·	mg/L mg/L	0.05	<0.05 <1	<0.05	<0.05 <1	<0.05	<0.05 <1	<0.05 <1	<0.05 <1	<0.05 <1	<0.05 <1	<0.05 <1	0.37	<0.05 <1	<0.
enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds	Antimony (filtered)	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.0
Chromi Cobalt Cobalt Copper Stronti Iron (fi Lead (f Manga Mercur Nickel Seleniu Vanadi Zinc (fil rmal alkanes Butane Butane Propan Propan Propan Propan Omatic drocarbons Ethylbe Toluen Total B Xylene Xylene Xylene Z,4,5-T 2,4,6-T 2,4-Dic 2,4-Dic		mg/L mg/L	0.0001	<0.0001 <0.001	<0.0001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 0.001	<0.0001 <0.001	0.0002	<0.0001 <0.001	<0.00
enolic compounds enolic compounds	Chromium (III+VI) (filtered)	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.0
enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds enolic compounds 2,4,5-T 2,4,6-T 2,4-Dic 2,4-Dic 2,4-Dic	· · ·	mg/L mg/L	0.001	<0.001 <0.001	0.004	0.033	0.028	0.002 <0.001	0.009 <0.001	0.001 <0.001	0.005	<0.001 <0.001	<0.001 0.001	0.0014	<0.001	<0.0
enolic compounds enolic compounds 2,4,5-T 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic		mg/L	0.001	8.12	5.17	0.098	0.097	0.349	0.118	0.847	0.104	0.121	0.072		0.098	0.0
enolic compounds enolic compounds 2,4,5-T 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic	lron (filtered) Lead (filtered)	mg/L mg/L	0.05	0.66 <0.001	5.72 0.007	0.1 <0.001	<0.05 <0.001	3.9 <0.001	1.38 <0.001	2.27 <0.001	3.2 <0.001	<0.05 <0.001	0.19	0.0034	0.16 <0.001	0.4
enolic compounds Propies 2,4,5-T 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic	Manganese (filtered) Mercury (filtered)	mg/L mg/L	0.001 0.0001	0.023	0.113 <0.0001	0.367	0.353	0.186	0.269	0.08 <0.0001	0.987 <0.0001	0.005 <0.0001	0.009 <0.0001	1.9 0.0006	0.016	0.1
enolic compounds enolic compounds 2,4,5-T 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic	Nickel (filtered)	mg/L	0.001	<0.001	0.016	0.012	0.01	0.002	0.008	<0.001	0.003	<0.001	<0.001	0.011	0.002	<0.0
enolic compounds enolic compounds 2,4,5-T 2,4-Dic 2,4-Dic 2,4-Dic 2,4-Dic	· · ·	mg/L mg/L	0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.011	<0.01 <0.01	<0.0
enolic compounds enolic compounds 2,4,5-T 2,4-Dic 2,4-Dic 2,4-Dic	Zinc (filtered)	mg/L	0.005	0.13	13.6	0.034	0.03	< 0.005	0.005	<0.005	0.008	0.024	0.687	0.008	<0.005	0.0
enolic compounds enolic compounds 2,4,5-T 2,4-Dic 2,4-Din		mg/L μg/L	0.01	<0.01 <10	<0.01 <10	<0.01 <10	<0.01 <10	<0.01 <10	<0.01 <10	<0.01 <10	<0.01 <10	<0.01 <10	<0.01 <10		<0.01 <10	<0.0
omatic drocarbons drocarbons Ethylbe Toluen Total B Xylene Xylene Xylene 2,4,5-T 2,4,6-T 2,4-Dic 2,4-Dic	Propane	mg/L	0.01	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.0
enolic compounds 2,4,5-T 2,4,6-T 2,4-Dic 2,4-Dic	Benzene	μg/L μg/L	10	<10 <1	<10 <1	<10	<10	<10 <1	<10	<10 <1	<10	<10 <1	<10	950	<10 <1	<1
enolic compounds 2,4,5-T 2,4,6-T 2,4-Dic 2,4-Din	Ethylbenzene Toluono	μg/L μg/L	2	<2 50	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 8	<2		<2 <2	<2
enolic compounds 2,4,5-T 2,4,6-T 2,4-Dic 2,4-Din	Total BTEX	μg/L	1	50	<1	<1	<1	<1	<1	<1	<1	8	3		<1	<1
enolic compounds 2,4,5-T 2,4,6-T 2,4-Dic 2,4-Din	Xylene (m & p) Xylene (o)	μg/L μg/L	2	<2 <2	<2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	350	<2 <2	<2
2,4,6-T 2,4-Dic 2,4-Din	Xylene Total	µg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2	<2
2,4-Dic 2,4-Din	•	μg/L μg/L	1	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	20	<1.0	<1. <1.
	2,4-Dichlorophenol	μg/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	160	<1.0	<1.
_,	2,4-Dimethylphenol 2,6-Dichlorophenol	μg/L μg/L	1 1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<1.
	2-Chlorophenol 2-Nitrophenol	μg/L μg/L	1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	490	<1.0 <1.0	<1.
	2-Methylphenol	μg/L μg/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.
3&4-№	3&4-Methylphenol (m&p-cresol)	μg/L	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.
Pentac	Pentachlorophenol	μg/L	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	10	<2.0	<2.
4-chlor Phenol		μg/L μg/L	1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	320	<1.0 <1.0	<1. <1.
	C10-C16 C10-C16 (52 minus Nanhthalene)	μg/L	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100		<100	<10
C10-C4		μg/L μg/L	100 100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100		<100 <100	<10
C16-C3	C16-C34 C34-C40	μg/L μg/L	100 100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100		<100 <100	<1
C6-C10	C6-C10	μg/L	20	70	<20	<20	<20	<20	<20	<20	<20	<20	<20		<20	<2
		μg/L μg/L	20	20 <1.0	<20 <1.0	<20	<20 <1.0	<20 <1.0	<20 <1.0	<20 <1.0	<20 <1.0	<20 <1.0	<20 <1.0	16	<20 <1.0	<2
rocarbons Acenap		µg/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1
· · · ·	Naphthalene Acenaphthene	μg/L μg/L	1 1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<1
Benz(a	Naphthalene	μg/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1
	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	μg/L μg/L	0.5	<0.5 <0.0005	<0.5 <0.0005	<0.5 <0.0005	<0.5 <0.0005	<0.5 <0.0005	<0.5 <0.0005	<0.5 <0.0005	<0.5 <0.0005	<0.5 <0.0005	<0.5 <0.0005		<0.5 <0.0005	<0><0
Benzo(Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene	µg/L	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0
	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a)pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene	μg/L	1 1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<1
Chryse	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a) pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene Benzo(g,h,i)perylene	μg/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1
	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a) pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	μg/L μg/L	1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<1
Fluorer	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a) pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	µg/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1
· · · ·	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a) pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	μg/L μg/L μg/L μg/L μg/L	0.5	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0		<0.5 <1.0	<0 <1
Phenar	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a) pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene Benzo(b+j)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene PAHs (Sum of total)	μg/L μg/L μg/L μg/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1
	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a) pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene Benzo(b+j)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene PAHs (Sum of total) Indeno(1,2,3-c,d)pyrene Phenanthrene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0 <50	<1
drocarbons C15-C2	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a) pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene Benzo(b+j)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene PAHs (Sum of total) Indeno(1,2,3-c,d)pyrene Phenanthrene Pyrene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 50	<1.0 <50	<50	<50	<50	<50	<50	<50	<50	<50	<50		<50	
C10-C1 C29-C3	Naphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(a) pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene Benzo(b+j)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene PAHs (Sum of total) Indeno(1,2,3-c,d)pyrene Phenanthrene Pyrene +C10-C36 (Sum of total) C15-C28	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1				<50 <100 <50	<50 <100 <50		<50 <100 <50	-		<50 <100 <50		<100 <50	<10

SUMMARY TABLE B.1 - Water quality results at the Glenlee and Menangle Park sites (2021/22 monitoring year)

Notes: * ANZECC (2000) Water Quality Guidelines only apply to Nepean River (NR) sample. ** ANZECC (2000) Water Quality Guidelines: 95% protection levels for the protection of freshwater aquatic ecosystems, south-east Australia, low lying river ecosystems.

*** pH (lab) was generally analysed outside of recommended holding times.

Appendix C Laboratory reports

CERTIFICATE OF ANALYSIS

Work Order	ES2123587	Page	: 1 of 8
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: Claire Corthier	Contact	: Sepan Mahamad
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61 2 8784 8555
Project	: AGL CAMDEN GAS PROJECT J200417	Date Samples Received	: 24-Jun-2021 17:00
Order number	:	Date Analysis Commenced	: 25-Jun-2021
C-O-C number	:	Issue Date	: 02-Jul-2021 16:59
Sampler	: Claire Corthier, Steve Rocks		NATA
Site	:		
Quote number	: SY/416/16 - AGL Camden Planned Event		Accreditation No. 825
No. of samples received	: 3		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories I	Position	Accreditation Category
Edwandy Fadjar	Inorganic Chemist Organic Coordinator Analyst	Sydney Inorganics, Smithfield, NSW Sydney Organics, Smithfield, NSW Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - ^ = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EK071G:LOR raised due to sample matrix.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	ТВ	TS	
		Sampli	ng date / time	[24-Jun-2021]	21-Jun-2021 00:00	21-Jun-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2123587-001	ES2123587-002	ES2123587-003	
				Result	Result	Result	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.58			
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	5260			
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	3060			
EA025: Total Suspended Solids dried	at 104 ± <u>2°C</u>						
Suspended Solids (SS)		5	mg/L	89			
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1			
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1			
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2240			
Total Alkalinity as CaCO3		1	mg/L	2240			
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1			
ED045G: Chloride by Discrete Analys	er						
Chloride	16887-00-6	1	mg/L	651			
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	193			
Magnesium	7439-95-4	1	mg/L	164			
Sodium	7440-23-5	1	mg/L	1050			
Potassium	7440-09-7	1	mg/L	38			
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01			
Antimony	7440-36-0	0.001	mg/L	<0.001			
Arsenic	7440-38-2	0.001	mg/L	0.021			
Boron	7440-42-8	0.05	mg/L	<0.05			
Barium	7440-39-3	0.001	mg/L	42.7			
Beryllium	7440-41-7	0.001	mg/L	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001			
Cobalt	7440-48-4	0.001	mg/L	<0.001			
Chromium	7440-47-3	0.001	mg/L	<0.001			
Copper	7440-50-8	0.001	mg/L	<0.001			
Manganese	7439-96-5	0.001	mg/L	0.023			
Nickel	7440-02-0	0.001	mg/L	<0.001			

Page	: 4 of 8
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	• AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	ТВ	TS	
		Sampling	g date / time	[24-Jun-2021]	21-Jun-2021 00:00	21-Jun-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2123587-001	ES2123587-002	ES2123587-003	
				Result	Result	Result	
EG020F: Dissolved Metals by ICP-M	S - Continued						
Lead	7439-92-1	0.001	mg/L	<0.001			
Selenium	7782-49-2	0.01	mg/L	<0.01			
Vanadium	7440-62-2	0.01	mg/L	<0.01			
Zinc	7440-66-6	0.005	mg/L	0.130			
Molybdenum	7439-98-7	0.001	mg/L	<0.001			
Strontium	7440-24-6	0.001	mg/L	8.12			
Uranium	7440-61-1	0.001	mg/L	<0.001			
Iron	7439-89-6	0.05	mg/L	0.66			
Bromine	7726-95-6	0.1	mg/L	1.5			
EG035F: Dissolved Mercury by FIMS	S						
Mercury	7439-97-6	0.0001	mg/L	<0.0001			
EG052G: Silica by Discrete Analyse	r						
Reactive Silica		0.05	mg/L	27.5			
EK026SF: Total CN by Segmented I	Flow Analyser						
Total Cyanide	57-12-5	0.004	mg/L	<0.004			
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.1			
EK055G: Ammonia as N by Discrete	Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	3.37			
EK057G: Nitrite as N by Discrete Ar	nalvser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01			
EK058G: Nitrate as N by Discrete A	nalvser						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01			
EK059G: Nitrite plus Nitrate as N (N		lvser					
Nitrite + Nitrate as N	IOX) by Discrete And	0.01	mg/L	<0.01			
EK067G: Total Phosphorus as P by							
Total Phosphorus as P	Discrete Analyser	0.01	mg/L	<0.01			
· ·							
EK071G: Reactive Phosphorus as P Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.05			
	14200-44-2	0.01	y/∟	-0.00			
EN055: Ionic Balance Ø Total Anions		0.01	meq/L	63.1			
Ø Total Anions Ø Total Cations		0.01	meq/L	69.8			
Ø lonic Balance		0.01	%	5.01			
		0.01	70	0.01			

Page	5 of 8
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	 AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	ТВ	TS	
		Sampli	ng date / time	[24-Jun-2021]	21-Jun-2021 00:00	21-Jun-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2123587-001	ES2123587-002	ES2123587-003	
				Result	Result	Result	
EP005: Total Organic Carbon (T	OC)						
Total Organic Carbon		1	mg/L	2			
EP033: C1 - C4 Hydrocarbon Ga	ses						
Methane	74-82-8	10	µg/L	27000			
Ethene	74-85-1	10	µg/L	<10			
Ethane	74-84-0	10	µg/L	133			
Propene	115-07-1	10	µg/L	<10			
Propane	74-98-6	10	µg/L	40			
Butene	25167-67-3	10	µg/L	<10			
Butane	106-97-8	10	µg/L	<10			
EP075(SIM)A: Phenolic Compou	nds						
Phenol	108-95-2	1.0	µg/L	<1.0			
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0			
2-Methylphenol	95-48-7	1.0	µg/L	<1.0			
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0			
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0			
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0			
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0			
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0			
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0			
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0			
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0			
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0			
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons						
Naphthalene	91-20-3	1.0	µg/L	<1.0			
Acenaphthylene	208-96-8	1.0	µg/L	<1.0			
Acenaphthene	83-32-9	1.0	µg/L	<1.0			
Fluorene	86-73-7	1.0	µg/L	<1.0			
Phenanthrene	85-01-8	1.0	µg/L	<1.0			
Anthracene	120-12-7	1.0	µg/L	<1.0			
Fluoranthene	206-44-0	1.0	µg/L	<1.0			
Pyrene	129-00-0	1.0	µg/L	<1.0			
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0			
Chrysene	218-01-9	1.0	µg/L	<1.0			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0			

Page	: 6 of 8
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	ТВ	TS	
		Sampli	ng date / time	[24-Jun-2021]	21-Jun-2021 00:00	21-Jun-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2123587-001	ES2123587-002	ES2123587-003	
				Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued					
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0			
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0			
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0			
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0			
^ Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5			
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5			
EP080/071: Total Petroleum Hydrocarbo	ons						
C6 - C9 Fraction		20	µg/L	70	<20		
C10 - C14 Fraction		50	μg/L	<50			
C15 - C28 Fraction		100	µg/L	<100			
C29 - C36 Fraction		50	µg/L	<50			
^ C10 - C36 Fraction (sum)		50	µg/L	<50			
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	ns				
C6 - C10 Fraction	C6_C10	20	µg/L	70	<20		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	20	<20		
(F1)							
>C10 - C16 Fraction		100	µg/L	<100			
>C16 - C34 Fraction		100	µg/L	<100			
>C34 - C40 Fraction		100	µg/L	<100			
^ >C10 - C40 Fraction (sum)		100	µg/L	<100			
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100			
(F2)							
EP080: BTEXN		_					
Benzene	71-43-2	1	µg/L	<1	<1	15	
	108-88-3	2	µg/L	50	<2	16	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	15	
	108-38-3 106-42-3	2	µg/L	<2	<2	14	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	15	
^ Total Xylenes		2	µg/L	<2	<2	29	
^ Sum of BTEX		1	µg/L	50	<1	75	
Naphthalene	91-20-3	5	µg/L	<5	<5	18	
ED009: Anions							
Bromide	24959-67-9	0.010	mg/L	1.44			

Page	: 7 of 8
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	• AGL CAMDEN GAS PROJECT J200417

		Sample ID	GLMB03	ТВ	TS		
	Sampli	ng date / time	[24-Jun-2021]	21-Jun-2021 00:00	21-Jun-2021 00:00		
CAS Number	LOR	Unit	ES2123587-001	ES2123587-002	ES2123587-003		
			Result	Result	Result		
urrogates							
13127-88-3	1.0	%	28.8				
93951-73-6	1.0	%	51.0				
118-79-6	1.0	%	42.5				
321-60-8	1.0	%	61.4				
1719-06-8	1.0	%	67.7				
1718-51-0	1.0	%	86.6				
17060-07-0	2	%	117	106	105		
2037-26-5	2	%	116	108	108		
460-00-4	2	%	116	101	103		
	Urrogates 13127-88-3 93951-73-6 118-79-6 321-60-8 1719-06-8 1719-06-8 1718-51-0 17060-07-0 2037-26-5	CAS Number LOR urrogates 13127-88-3 1.0 93951-73-6 1.0 1.0 118-79-6 1.0 1.0 321-60-8 1.0 1.0 1719-06-8 1.0 1.0 1718-51-0 1.0 1.0 2037-26-5 2 2	Introgates 13127-88-3 1.0 % 93951-73-6 1.0 % 118-79-6 1.0 % 321-60-8 1.0 % 1719-06-8 1.0 % 1718-51-0 1.0 % 17060-07-0 2 % 2037-26-5 2 %	Sampling date / time [24-Jun-2021] CAS Number LOR Unit ES2123587-001 Result Result 13127-88-3 1.0 % 28.8 93951-73-6 1.0 % 51.0 118-79-6 1.0 % 61.4 1719-06-8 1.0 % 67.7 1718-51-0 1.0 % 86.6 17060-07-0 2 % 117 2037-26-5 2 % 116	Sampling date / time [24-Jun-2021] 21-Jun-2021 00:00 CAS Number LOR Unit ES2123587-001 ES2123587-002 Result Result Result Result 13127-88-3 1.0 % 28.8 93951-73-6 1.0 % 51.0 118-79-6 1.0 % 61.4 321-60-8 1.0 % 61.4 1719-06-8 1.0 % 61.4 1718-51-0 1.0 % 86.6 17060-07-0 2 % 117 106 2037-26-5 2 % 116 108	Sampling date / time [24-Jun-2021] 21-Jun-2021 00:00 21-Jun-2021 00:00 CAS Number LOR Unit ES2123587-001 ES2123587-002 ES2123587-003 CAS Number LOR Unit ES2123587-001 ES2123587-002 ES2123587-003 rrogates Result Result Result Result 13127-88-3 1.0 % 51.0	Sampling date / time [24-Jun-2021] 21-Jun-2021 00:00 21-Jun-2021 00:00 CAS Number LOR Unit ES2123587-001 ES2123587-002 ES2123587-003 Result Result Result Result Result 13127-88-3 1.0 % 28.8 93951-73-6 1.0 % 51.0 118-79-6 1.0 % 42.5 321-60-8 1.0 % 61.4 321-60-8 1.0 % 67.7 321-60-8 1.0 % 66.6 1719-06-8 1.0 % 86.6 17060-07-0 2 % 117 106 105 2037-26-5 2 % 11

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QUALITY CONTROL REPORT

Work Order	: ES2123587	Page	: 1 of 12	
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney	
Contact	: Claire Corthier	Contact	: Sepan Mahamad	
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	
Telephone	:	Telephone	: +61 2 8784 8555	
Project	: AGL CAMDEN GAS PROJECT J200417	Date Samples Received	: 24-Jun-2021	
Order number	:	Date Analysis Commenced	: 25-Jun-2021	
C-O-C number	:	Issue Date	: 02-Jul-2021	-
Sampler	: Claire Corthier, Steve Rocks		Hac-MRA NA	IA
Site	:			
Quote number	: SY/416/16 - AGL Camden Planned Event		Accreditation	No. 825
No. of samples received	: 3		Accredited for complian	
No. of samples analysed	: 3		ISO/IEC 17025 -	 Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED009: Anions (QC	CLot: 3762059)								
EP2107077-001	Anonymous	ED009-X: Bromide	24959-67-9	0.01	mg/L	0.099	0.097	2.0	No Limit
EP2107211-006	Anonymous	ED009-X: Bromide	24959-67-9	0.01	mg/L	47.2	47.3	0.2	0% - 20%
EA005P: pH by PC T	itrator (QC Lot: 3758	724)							
ES2123662-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.71	7.71	0.0	0% - 20%
ES2123662-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.92	7.86	0.8	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC	Lot: 3758721)							
ES2123662-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	10200	10300	0.4	0% - 20%
ES2123546-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	7670	7710	0.5	0% - 20%
ES2123662-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	10500	10500	0.2	0% - 20%
ES2123265-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	64	63	2.3	0% - 20%
ES2123718-007	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	19500	19500	0.1	0% - 20%
ES2123718-017	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	24	25	0.0	0% - 20%
EA015: Total Dissol	ved Solids dried at 18	0 ± 5 °C (QC Lot: 3763437)							
ES2123468-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	2100	2090	0.6	0% - 20%
ES2123582-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	21200	21600	2.1	0% - 20%
EA025: Total Suspe	nded Solids dried at 1	04 ± 2°C (QC Lot: 3763438)							
ES2123468-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	88	88	0.0	0% - 50%
ES2123582-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	9	19	69.0	No Limit
ED037P: Alkalinity b	by PC Titrator (QC Lot	t: 3758723)							
ES2123546-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	321	288	10.7	0% - 20%
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	213	187	13.2	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	535	476	11.7	0% - 20%
ES2123662-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit

Page	: 3 of 12
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
ED037P: Alkalinity I	by PC Titrator (QC Lot	: 3758723) - continued									
ES2123662-001	Anonymous	ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	716	668	6.8	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	716	668	6.8	0% - 20%		
ED041G: Sulfate (Tu	urbidimetric) as SO4 2-	by DA (QC Lot: 3757053)									
ES2123625-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	20	20	0.0	0% - 50%		
ES2123378-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	676	669	1.2	0% - 20%		
D045G: Chloride b	y Discrete Analyser (0	QC Lot: 3757054)									
ES2123581-002	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	36	36	0.0	0% - 20%		
ES2123378-002	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	521	520	0.0	0% - 20%		
ED/193E: Dissolved	Major Cations (QC Lo				5						
EW2102812-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	17	17	0.0	0% - 50%		
	7 alonymous	ED093F: Magnesium	7439-95-4	1	mg/L	2	2	0.0	No Limit		
		ED093F: Sodium	7440-23-5	1	mg/L	18	18	0.0	0% - 50%		
		ED093F: Potassium	7440-09-7	1	mg/L	1	1	0.0	No Limit		
ES2123587-001	GLMB03	ED093F: Calcium	7440-70-2	1	mg/L	193	192	0.0	0% - 20%		
	ED093F: Magnesium	7439-95-4	1	mg/L	164	160	2.5	0% - 20%			
	ED093F: Sodium	7440-23-5	1	mg/L	1050	1020	2.4	0% - 20%			
		ED093F: Potassium	7440-09-7	1	mg/L	38	38	0.0	0% - 20%		
CO20E: Dissolved	Metals by ICP-MS (QC				3						
ES2123819-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
202120010 001	7 alonymous	EG020A-F: Cadmidin EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Antimoty EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.018	0.019	0.0	0% - 50%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	< 0.001	< 0.001	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	< 0.001	<0.001	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	< 0.001	<0.001	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.068	0.066	2.8	0% - 20%		
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.0	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit		
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.03	0.03	0.0	No Limit		
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit		
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit		
		EG020A-F: Bromine	7726-95-6	0.1	mg/L	<0.1	0.1	0.0	No Limit		
ES2123587-001	GLMB03	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	< 0.0001	<0.0001	0.0	No Limit		

Page	: 4 of 12
Work Order	ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Laboratory sample IDSample IDNethoric CompandCAS NumberURUnitOriginal ResultDeglicate ResultRep 0%EG020F: Dissolved Matals by ICP-MS (QC Lot: 3744657) - continued7440-3820.001mg/L0.0010.00EG020AF: Antimony7440-3820.001mg/L0.0010.0010.001EG020AF: Ravilium7440-3820.001mg/L0.0010.0010.001EG020AF: Barlium7440-3830.001mg/L42.01140.0010.001EG020AF: Commin7440-4730.001mg/L40.00140.0010.00EG020AF: Copper7440-4840.001mg/L40.00140.0010.00EG020AF: Copper7440-4840.001mg/L40.00140.0010.00EG020AF: Manganese7439-8970.001mg/L40.00140.0010.00EG020AF: Manganese7439-8970.001mg/L40.00140.0010.00EG020AF: Nickel7440-6200.001mg/L40.01140.01140.010.00EG020AF: Nickel7440-6200.001mg/L40.01140.0140.0140.01EG020AF: Stantin7429-8950.01mg/L40.0140.0140.0140.01EG020AF: Stantin7440-6200.001mg/L40.0140.0140.0140.01EG020AF: Stantin7440-6200.001mg/L40.0140.0140.0140.01EG020AF: Stantin7440-6200.001 </th <th>Acceptable RPD (%, No Limit 0% - 20% No Limit No Limit 0% - 20% No Limit No Limit</th>	Acceptable RPD (%, No Limit 0% - 20% No Limit No Limit 0% - 20% No Limit No Limit
ES2123587-001 GLMB03 EG020A.F: Antimony 7440-36-0 0.001 mg/L <0.001	0% - 20% No Limit 0% - 20% No Limit No Limit No Limit 0% - 20% No Limit No Limit No Limit
Excession Total Doc Doc <thdoc< th=""> Doc Doc <thd< td=""><td>0% - 20% No Limit 0% - 20% No Limit No Limit No Limit 0% - 20% No Limit No Limit No Limit</td></thd<></thdoc<>	0% - 20% No Limit 0% - 20% No Limit No Limit No Limit 0% - 20% No Limit No Limit No Limit
EG020A-F: Beryllium 7440-41-7 0.001 mg/L <0.001 <0.001 EG020A-F: Beryllium 7440-41-7 0.001 mg/L 42.7 42.9 0.5 EG020A-F: Chromium 7440-47-3 0.001 mg/L <0.001	No Limit 0% - 20% No Limit No Limit No Limit 0% - 20% No Limit 0% - 20% No Limit 0% - 20% No Limit
EG020A-F: Barium 7440-39-3 0.001 mg/L 42.7 42.9 0.5 EG020A-F: Chromium 7440-47-3 0.001 mg/L <0.001	0% - 20% No Limit No Limit No Limit 0% - 20% No Limit No Limit No Limit No Limit No Limit No Limit
EG020A+: Chromium 7440-47.3 0.01 mg/L <0.01 <0.01 0.0 EG020A+: Cobalt 7440-484 0.001 mg/L <0.001	No LimitNo LimitNo LimitNo Limit0% - 20%No Limit0% - 20%No Limit0% - 20%No LimitNo LimitNo LimitNo LimitNo Limit
EG020A-F: Cobalt 7440-884 0.001 mg/L <0.001	No LimitNo LimitNo Limit0% - 20%No Limit0% - 20%No Limit0% - 20%No LimitNo LimitNo LimitNo Limit
EG020A:F: Copper 7440-50-8 0.001 mg/L <0.001 <0.01 0.0 EG020A:F: Maganese 7439-92-1 0.001 mg/L <0.001	No LimitNo Limit0% - 20%No LimitNo Limit0% - 20%No LimitNo LimitNo LimitNo LimitNo Limit
EG020A.F: Lead 7439-92-1 0.001 mg/L <0.001 <0.01 0.0 EG020A.F: Manganese 7439-96-5 0.001 mg/L 0.023 0.022 0.0 EG020A.F: Manganese 7439-96-5 0.001 mg/L <0.001	No Limit0% - 20%No Limit0% - 20%No LimitNo LimitNo LimitNo Limit
EG020A-F: Manganese 7439-965 0.001 mg/L 0.023 0.022 0.0 EG020A-F: Molybdenum 7439-967 0.001 mg/L <0.001	0% - 20% No Limit 0% - 20% No Limit 0% - 20% No Limit No Limit
EG020A-F: Molybdenum 7439-87- 0.001 mg/L <0.001 <0.001 0.001 EG020A-F: Nickel 7440-02-0 0.001 mg/L <0.001	No LimitNo Limit0% - 20%No LimitNo LimitNo Limit
EG20A.F: Nickel 7440-02- 0.001 mg/L <0.001 0.001 0.001 EG020A.F: Nickel 7440-66-6 0.005 mg/L 0.130 0.129 0.0 EG020A.F: Zinc 7440-66-6 0.005 mg/L 0.01 <0.01	No Limit 0% - 20% No Limit No Limit
EG020A-F: Zinc 7440-66-6 0.005 mg/L 0.130 0.129 0.0 EG020A-F: Aluminium 7429-90-5 0.01 mg/L <0.01	0% - 20% No Limit No Limit
EG020A-F: Aluminium 7429-0-5 0.01 mg/L <0.01 <0.01 0.0 EG020A-F: Aluminium 778249-2 0.01 mg/L <0.01	No Limit No Limit
EG020A-F: Selenium 7782-49-2 0.01 mg/L <0.01 <0.01 0.0 EG020A-F: Vanadium 7440-62-2 0.01 mg/L <0.01	No Limit
EG020A-F: Vanadium 7440-62-2 0.01 mg/L <0.01 <0.01 0.0 EG020A-F: Vanadium 7440-42-8 0.05 mg/L <0.01	
EG020A-F: Boron 7440-42-8 0.05 mg/L <0.05 <0.05 0.0 EG020A-F: Iron 7439-89-6 0.05 mg/L 0.66 0.64 2.5 EG020A-F: Bromine 7726-95-6 0.1 mg/L 1.5 1.5 0.0 EG020F: Dissolved Metals by ICP-MS (QC Lot: 3764660) EG020B-F: Strontium 7440-24-6 0.001 mg/L 0.060 0.058 2.5 EG020B-F: Uranium 7440-61-1 0.001 mg/L <0.001	No Limit
EG020A-F: Iron 7439-89-6 0.05 mg/L 0.66 0.64 2.5 EG020A-F: Bromine 7726-95-6 0.1 mg/L 1.5 1.5 0.0 CO20F: Dissolved Metals by ICP-MS (QC Lot: 3764660) EG020B-F: Strontium 7440-24-6 0.001 mg/L 0.060 0.058 2.5 ES212388-006 Anonymous EG020B-F: Uranium 7440-61-1 0.001 mg/L 40.001 40.001 0.0 ES2123587-001 GLMB03 EG020B-F: Strontium EG020B-F: Uranium 7440-61-1 0.001 mg/L 8.12 8.17 0.6 EG020B-F: Dissolved Mercury by FIMS (QC Lot: 3764659) EG020B-F: Uranium 7440-61-1 0.001 mg/L <0.001	
EG020A-F: Bromine 7726-95-6 0.1 mg/L 1.5 1.5 0.0 G020F: Dissolved Metals by ICP-MS (QC Lot: 3764660) EG020B-F: Strontium 7440-24-6 0.001 mg/L 0.0600 0.058 2.5 ES212388-006 Anonymous EG020B-F: Uranium 7440-24-6 0.001 mg/L 0.001 <0.001	No Limit
EG020F: Dissolved Metals by ICP-MS (QC Lot: 3764660) EG020F: Dissolved Metals by ICP-MS (QC Lot: 3764660) Figure 1000000000000000000000000000000000000	0% - 50%
ES2123888-006 Anonymous EG020B-F: Strontium 7440-24-6 0.001 mg/L 0.060 0.058 2.5 EG020B-F: Uranium 7440-61-1 0.001 mg/L <0.001	0% - 50%
EG020DF: Control Contro Control <thcontrol< th=""> <th< td=""><td></td></th<></thcontrol<>	
EG020B-F: Uranium 7440-61-1 0.001 mg/L <0.001 <0.001 0.0 ES2123587-001 GLMB03 EG020B-F: Strontium 7440-24-6 0.001 mg/L 8.12 8.17 0.6 EG020B-F: Uranium 7440-61-1 0.001 mg/L <0.001	0% - 20%
EG020BT: Output Television Te	No Limit
G035F: Dissolved Mercury by FIMS (QC Lot: 3764659) ES2123859-003 Anonymous EG035F: Mercury 7439-97-6 0.0001 mg/L <0.0001	0% - 20%
ES2123859-003 Anonymous EG035F: Mercury 7439-97-6 0.0001 mg/L <0.0001 <0.0001 0.0	No Limit
ES2123587-001 GLMB03 EG035F: Mercury 7439-97-6 0.0001 mg/L <0.0001 <0.0001 0.0	No Limit
	No Limit
G052G: Silica by Discrete Analyser (QC Lot: 3757058)	
ES2123581-001 Anonymous EG052G: Reactive Silica 0.05 mg/L 11.2 11.4 2.4	0% - 20%
K026SF: Total CN by Segmented Flow Analyser (QC Lot: 3756320)	
ES2123516-001 Anonymous EK026SF: Total Cyanide 57-12-5 0.004 mg/L 0.012 0.013 8.0	No Limit
K040P: Fluoride by PC Titrator (QC Lot: 3758722)	
ES2123265-001 Anonymous EK040P: Fluoride 16984-48-8 0.1 mg/L 0.5 0.5 0.0	No Limit
EX2123718-007 Anonymous EK040P: Fluoride 16984-48-8 0.1 mg/L 0.6 0.6 0.0	No Limit
K055G: Ammonia as N by Discrete Analyser (QC Lot: 3762028)	
	No Limit
ES2123262-001 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.07 0.06 20.2 ES2123595-001 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.06 0.06 0.0	No Limit
K057G: Nitrite as N by Discrete Analyser (QC Lot: 3757055)	
ES2123378-002 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L 0.01 0.01 0.01 0.0	No Limit
K059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 3762029)	

Page	5 of 12
Work Order	ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EK059G: Nitrite plu	is Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 3762029) - continued										
ES2123262-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit			
ES2123595-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit			
EK067G: Total Phos	sphorus as P by Disci	rete Analyser (QC Lot: 3762023)										
ES2123262-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.66	0.66	0.0	0% - 20%			
ES2123598-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	1.39	1.50	7.8	0% - 50%			
EK071G: Reactive P	Phosphorus as P by d	liscrete analyser (QC Lot: 3757057)										
ES2123557-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit			
P005: Total Organ	ic Carbon (TOC) (QC											
ES2123312-004	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0	No Limit			
ES2123582-002	Anonymous	EP005: Total Organic Carbon		1	mg/L	2	2	0.0	No Limit			
	rocarbon Gases (QC				5							
EB2117686-001	Anonymous	EP033: Methane	74-82-8	10	µg/L	14900	14700	1.9	0% - 20%			
_D2117000-001	Anonymous	EP033: Ethene	74-85-1	10	μg/L	<10	<10	0.0	No Limit			
		EP033: Ethane	74-84-0	10	μg/L	<10	<10	0.0	No Limit			
	EP033: Propene	115-07-1	10	μg/L	<10	<10	0.0	No Limit				
		EP033: Propane	74-98-6	10	μg/L	<10	<10	0.0	No Limit			
	EP033: Butene	25167-67-3	10	μg/L	<10	<10	0.0	No Limit				
	EP033: Butane	106-97-8	10	µg/L	<10	<10	0.0	No Limit				
ES2123460-007	Anonymous	EP033: Methane	74-82-8	10	µg/L	<10	<10	0.0	No Limit			
	,	EP033: Ethene	74-85-1	10	μg/L	<10	<10	0.0	No Limit			
		EP033: Ethane	74-84-0	10	μg/L	<10	<10	0.0	No Limit			
		EP033: Propene	115-07-1	10	µg/L	<10	<10	0.0	No Limit			
		EP033: Propane	74-98-6	10	µg/L	<10	<10	0.0	No Limit			
		EP033: Butene	25167-67-3	10	µg/L	<10	<10	0.0	No Limit			
		EP033: Butane	106-97-8	10	µg/L	<10	<10	0.0	No Limit			
EP080/071: Total Pe	etroleum Hydrocarbor	ns (QC Lot: 3760347)										
ES2123349-004	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit			
ES2123591-003	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	130	120	10.1	No Limit			
EP080/071: Total Re	ecoverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 3760347)										
ES2123349-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit			
ES2123591-003	Anonymous	EP080: C6 - C10 Fraction	C6 C10	20	µg/L	<20	<20	0.0	No Limit			
EP080: BTEXN (QC	-		_									
ES2123349-004	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit			
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit			
		EP080: Ethylbenzene	100-00-0	2	μg/L	<2	<2	0.0	No Limit			
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit			
			106-42-3	-	F'3' -	_	_					
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit			
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit			

Page	: 6 of 12
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP080: BTEXN (QC	Lot: 3760347) - continued									
ES2123591-003	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit	
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit	
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit	

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED009: Anions (QCLot: 3762059)									
D009-X: Bromide	24959-67-9	0.01	mg/L	<0.010	2 mg/L	103	93.0	109	
A005P: pH by PC Titrator (QCLot: 3758724)									
EA005-P: pH Value			pH Unit		4 pH Unit	100	98.8	101	
			F		7 pH Unit	101	99.2	101	
EA010P: Conductivity by PC Titrator (QCLot: 37587)	21)				·				
A010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	220 µS/cm	103	91.1	107	
AUTO-F. Electrical Conductivity @ 23 C			μολοιτί	<1	2100 µS/cm	103	93.2	108	
FAD4E. Tatal Disselved Calida dried at 400 L 5 °C. (C	01 -++ 0700407)			-					
A015: Total Dissolved Solids dried at 180 ± 5 °C (Q	CLOT: 3763437)	10	mg/L	<10	2000 mg/L	93.8	87.0	109	
A015H: Total Dissolved Solids @180°C		10	ing/∟	<10	2000 mg/L 293 mg/L	110	75.2	109	
				<10	2835 mg/L	104	83.0	120	
					2000 mg/2		00.0		
EA025: Total Suspended Solids dried at 104 ± 2°C(-5	450	00.7	02.0	100	
A025H: Suspended Solids (SS)		5	mg/L	<5 <5	150 mg/L	88.7	83.0	129 110	
				<5	1000 mg/L 463 mg/L	94.4 97.1	82.0 83.0	118	
				<5	403 mg/L	97.1	63.0	110	
D037P: Alkalinity by PC Titrator (QCLot: 3758723)									
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	101	81.0	111	
					50 mg/L	103	80.0	120	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(Q									
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	97.9	82.0	122	
				<1	500 mg/L	101	82.0	122	
D045G: Chloride by Discrete Analyser (QCLot: 375	57054)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	100	80.9	127	
				<1	1000 mg/L	100	80.9	127	
ED093F: Dissolved Major Cations (QCLot: 3764658)									
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	96.4	80.0	114	
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	96.0	90.0	116	
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	97.2	82.0	120	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	96.0	85.0	113	
G020F: Dissolved Metals by ICP-MS (QCLot: 37646	57)								
G020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	83.8	80.0	116	
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	0.02 mg/L	93.3	70.0	130	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	88.1	85.0	114	
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	87.0	85.0	115	

Page	: 8 of 12
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 376465	7) - continued							
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	86.0	82.0	110
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	86.6	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	85.9	85.0	111
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	85.9	82.0	112
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	87.5	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	86.4	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	87.5	82.0	110
G020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	88.8	79.0	113
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	86.7	82.0	112
G020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	86.4	85.0	115
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	89.4	83.0	109
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	85.0	81.0	117
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	87.2	85.0	115
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	86.8	82.0	112
EG020A-F: Bromine	7726-95-6	0.1	mg/L	<0.1				
G020F: Dissolved Metals by ICP-MS (QCLot: 376466	D)							
G020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	83.8	81.0	113
G020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001	0.1 mg/L	86.9	85.0	115
EG035F: Dissolved Mercury by FIMS (QCLot: 3764659)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	95.1	83.0	105
EG052G: Silica by Discrete Analyser (QCLot: 3757058	Y							
EG052G: Reactive Silica		0.05	mg/L	<0.05	5 mg/L	99.8	92.0	118
			5	<0.05	0.5 mg/L	95.6	80.0	120
EK026SF: Total CN by Segmented Flow Analyser (QC	l of: 3756320)							
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	116	73.0	133
	01 12 0	0.001	ing/E	0.001	0.2 mg/2	110	10.0	100
EK040P: Fluoride by PC Titrator (QCLot: 3758722)	16984-48-8	0.1	mg/L	<0.1	5 mg/L	98.8	82.0	116
EK040P: Fluoride		0.1	IIIg/L	NO.1	5 mg/L	90.0	82.0	110
EK055G: Ammonia as N by Discrete Analyser (QCLot:						101		
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	101	90.0	114
K057G: Nitrite as N by Discrete Analyser (QCLot: 37								
K057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	102	82.0	114
K059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser (QCLot: 376	2029)						
K059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	102	91.0	113
EK067G: Total Phosphorus as P by Discrete Analyser	(QCLot: 3762023)							
K067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	96.2	71.0	101
·			_	<0.01	0.442 mg/L	# 116	72.0	108
				<0.01	1 mg/L	114	70.0	130

Page	: 9 of 12
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
K071G: Reactive Phosphorus as P by discrete ana	lyser (QCLot: 3757057)								
K071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	99.2	85.0	117	
EP005: Total Organic Carbon (TOC) (QCLot: 376031	8)								
P005: Total Organic Carbon		1	mg/L	<1	10 mg/L	93.7	72.0	120	
P033: C1 - C4 Hydrocarbon Gases (QCLot: 375767	(4)								
P033: Methane	74-82-8	10	µg/L	<10	28.48 µg/L	99.6	86.0	114	
P033: Ethene	74-85-1	10	μg/L	<10	50.29 µg/L	99.3	87.0	111	
P033: Ethane	74-84-0	10	µg/L	<10	54.43 µg/L	101	87.0	111	
P033: Propene	115-07-1	10	µg/L	<10	73.97 µg/L	99.7	85.0	113	
P033: Propane	74-98-6	10	µg/L	<10	78.28 µg/L	102	84.0	112	
P033: Butene	25167-67-3	10	μg/L	<10	99.61 µg/L	102	83.0	115	
P033: Butane	106-97-8	10	μg/L	<10	102.18 µg/L	104	85.0	115	
P075(SIM)A: Phenolic Compounds (QCLot: 375706	50)								
P075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 μg/L	34.3	24.5	61.9	
P075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 μg/L	70.6	52.0	90.0	
P075(SIM): 2-Methylphenol	95-48-7	1	µg/L	<1.0	5 µg/L	68.6	51.0	91.0	
P075(SIM): 3- & 4-Methylphenol	1319-77-3	2	µg/L	<2.0	10 µg/L	58.1	44.0	88.0	
P075(SIM): 2-Nitrophenol	88-75-5	1	µg/L	<1.0	5 µg/L	73.0	48.0	100	
P075(SIM): 2.4-Dimethylphenol	105-67-9	1	µg/L	<1.0	5 µg/L	74.4	49.0	99.0	
P075(SIM): 2.4-Dichlorophenol	120-83-2	1	µg/L	<1.0	5 µg/L	74.9	53.0	105	
P075(SIM): 2.6-Dichlorophenol	87-65-0	1	µg/L	<1.0	5 µg/L	69.2	57.0	105	
P075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	µg/L	<1.0	5 µg/L	68.0	53.0	99.0	
P075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	µg/L	<1.0	5 µg/L	68.7	50.0	106	
P075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	µg/L	<1.0	5 µg/L	70.2	51.0	105	
P075(SIM): Pentachlorophenol	87-86-5	2	µg/L	<2.0	10 µg/L	39.5	10.0	95.0	
P075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 3757060)								
P075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	77.2	50.0	94.0	
P075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	69.2	63.6	114	
P075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	74.1	62.2	113	
P075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	71.5	63.9	115	
P075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 μg/L	77.1	62.6	116	
P075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	78.9	64.3	116	
P075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	76.7	63.6	118	
P075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	80.0	63.1	118	
P075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	76.2	64.1	117	
P075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	76.1	62.5	116	
P075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	74.2	61.7	119	
	205-82-3								
P075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 µg/L	79.5	63.0	115	

Page	: 10 of 12
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 3757060) - co	ntinued							
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	70.1	63.3	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	70.4	59.9	118	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	73.5	61.2	117	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	69.1	59.1	118	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3757	061)								
EP071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	76.9	55.8	112	
EP071: C15 - C28 Fraction		100	µg/L	<100	600 µg/L	80.8	71.6	113	
EP071: C29 - C36 Fraction		50	µg/L	<50	400 µg/L	98.2	56.0	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3760	347)								
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	76.8	75.0	127	
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	.ot: 3757061)							
EP071: >C10 - C16 Fraction		100	µg/L	<100	500 μg/L	68.3	57.9	119	
EP071: >C16 - C34 Fraction		100	µg/L	<100	700 µg/L	86.6	62.5	110	
EP071: >C34 - C40 Fraction		100	µg/L	<100	300 µg/L	83.1	61.5	121	
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	.ot: 3760347)							
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	81.0	75.0	127	
EP080: BTEXN (QCLot: 3760347)									
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	80.3	70.0	122	
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	90.7	69.0	123	
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	92.0	70.0	120	
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	92.1	69.0	121	
	106-42-3								
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	92.5	72.0	122	
EP080: Naphthalene	91-20-3	5	µg/L	<5	10 µg/L	95.4	70.0	120	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report				
				Spike	Spike SpikeRecovery(%) Acceptable Limits (%		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED009: Anions (Q	CLot: 3762059)						
EP2107077-001	Anonymous	ED009-X: Bromide	24959-67-9	0.2 mg/L	95.5	70.0	130
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 3757053)						
ES2123378-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	# Not	70.0	130
					Determined		

Page	: 11 of 12
Work Order	ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

ub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
D045G: Chloride	by Discrete Analyser (QCLot: 3757054)							
ES2123378-002	Anonymous	ED045G: Chloride	16887-00-6	50 mg/L	# Not	70.0	130	
				-	Determined			
G020F: Dissolve	d Metals by ICP-MS (QCLot: 3764657)							
ES2123574-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	112	70.0	130	
		EG020A-F: Beryllium	7440-41-7	1 mg/L	108	70.0	130	
		EG020A-F: Barium	7440-39-3	1 mg/L	115	70.0	130	
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	111	70.0	130	
		EG020A-F: Chromium	7440-47-3	1 mg/L	114	70.0	130	
		EG020A-F: Cobalt	7440-48-4	1 mg/L	126	70.0	130	
		EG020A-F: Copper	7440-50-8	1 mg/L	126	70.0	130	
		EG020A-F: Lead	7439-92-1	1 mg/L	111	70.0	130	
		EG020A-F: Manganese	7439-96-5	1 mg/L	118	70.0	130	
		EG020A-F: Nickel	7440-02-0	1 mg/L	116	70.0	130	
		EG020A-F: Vanadium	7440-62-2	1 mg/L	104	70.0	130	
		EG020A-F: Zinc	7440-66-6	1 mg/L	117	70.0	130	
EG035F: Dissolve	d Mercury by FIMS (QCLot: 3764659)							
ES2123819-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	86.2	70.0	130	
-G052G: Silica by	Discrete Analyser (QCLot: 3757058)			_			1	
ES2123581-001	Anonymous	EG052G: Reactive Silica		5 mg/L	110	70.0	130	
		EG052G. Reactive Silica		5 mg/L	110	70.0	150	
	N by Segmented Flow Analyser (QCLot: 3756320)							
ES2123516-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	94.4	70.0	130	
EK040P: Fluoride	by PC Titrator (QCLot: 3758722)							
ES2123265-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	93.6	70.0	130	
K055G: Ammoni	a as N by Discrete Analyser (QCLot: 3762028)							
ES2123262-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	96.0	70.0	130	
				·				
	s N by Discrete Analyser (QCLot: 3757055)						1	
ES2123378-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	108	70.0	130	
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 3	762029)						
ES2123262-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	99.5	70.0	130	
K067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 3762023)							
ES2123262-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	105	70.0	130	
	Phosphorus as P by discrete analyser (QCLot: 37570)		44005 44 0	0.5	101	70.0	400	
ES2123557-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	101	70.0	130	
P005: Total Orga	nic Carbon (TOC) (QCLot: 3760318)							
ES2123313-002	Anonymous	EP005: Total Organic Carbon		100 mg/L	121	70.0	130	

Page	: 12 of 12
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

ub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)		
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
P033: C1 - C4 Hy	drocarbon Gases (QCLot: 3757674)								
EB2117686-002	2117686-002 Anonymous	EP033: Methane	74-82-8	28.48 µg/L	# Not Determined	70.0	130		
		EP033: Ethene	74-85-1	50.29 µg/L	93.3	70.0	130		
	EP033: Ethane	74-84-0	54.43 µg/L	99.6	70.0	130			
	EP033: Propene	115-07-1	73.97 µg/L	97.2	70.0	130			
	EP033: Propane	74-98-6	78.28 µg/L	99.2	70.0	130			
	EP033: Butene	25167-67-3	99.61 µg/L	96.1	70.0	130			
		EP033: Butane	106-97-8	102.18 µg/L	98.7	70.0	130		
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 37603	347)							
S2123349-004	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	93.1	70.0	130		
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013	Fractions (QCLot: 3760347)							
ES2123349-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	92.1	70.0	130		
P080: BTEXN (Q	CLot: 3760347)								
S2123349-004	Anonymous	EP080: Benzene	71-43-2	25 µg/L	92.6	70.0	130		
		EP080: Toluene	108-88-3	25 µg/L	93.6	70.0	130		
		EP080: Ethylbenzene	100-41-4	25 µg/L	94.4	70.0	130		
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	91.4	70.0	130		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	25 µg/L	90.2	70.0	130		
		EP080: Naphthalene	91-20-3	25 µg/L	95.1	70.0	130		

	QA/QC Compliance As	sessment to assist with	n Quality Review
Work Order	: ES2123587	Page	: 1 of 11
Client		Laboratory	: Environmental Division Sydney
Contact	: Claire Corthier	Telephone	: +61 2 8784 8555
Project	: AGL CAMDEN GAS PROJECT J200417	Date Samples Received	: 24-Jun-2021
Site	:	Issue Date	: 02-Jul-2021
Sampler	: Claire Corthier, Steve Rocks	No. of samples received	: 3
Order number	:	No. of samples analysed	: 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EK067G: Total Phosphorus as P by Discrete Analyser	QC-MRG2-37620230)	Total Phosphorus as P		116 %	72.0-108%	Recovery greater than upper control
							limit
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	ES2123378002	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
ED045G: Chloride by Discrete Analyser	ES2123378002	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP033: C1 - C4 Hydrocarbon Gases	EB2117686002	Anonymous	Methane	74-82-8	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	ount	Rate	(%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	17	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	17	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)					
Conductivity by PC Titrator	4	50	8.00	8.33	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	17	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	17	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: * = Holding time breach ; < = Within holding time								
Method	Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	

Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method	Sample Date	te Extraction / Preparation				Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural (EA005-P)						05 1 0004	
GLMB03	24-Jun-2021				25-Jun-2021	25-Jun-2021	✓
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural (EA010-P) GLMB03	24-Jun-2021				25-Jun-2021	22-Jul-2021	1
EA015: Total Dissolved Solids dried at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA015H)							
GLMB03	24-Jun-2021				29-Jun-2021	01-Jul-2021	✓
EA025: Total Suspended Solids dried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA025H) GLMB03	24-Jun-2021				29-Jun-2021	01-Jul-2021	~
ED009: Anions							
Clear Plastic Bottle - Natural (ED009-X) GLMB03	24-Jun-2021				29-Jun-2021	22-Jul-2021	1
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural (ED037-P) GLMB03	24-Jun-2021				25-Jun-2021	08-Jul-2021	~
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Clear Plastic Bottle - Natural (ED041G)							
GLMB03	24-Jun-2021				25-Jun-2021	22-Jul-2021	✓
ED045G: Chloride by Discrete Analyser							
Clear Plastic Bottle - Natural (ED045G) GLMB03	24-Jun-2021				25-Jun-2021	22-Jul-2021	1
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)						00.1.1.0004	
GLMB03	24-Jun-2021				30-Jun-2021	22-Jul-2021	✓
EG020F: Dissolved Metals by ICP-MS					1		
Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) GLMB03	24-Jun-2021				30-Jun-2021	22-Dec-2021	~
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)							
GLMB03	24-Jun-2021				01-Jul-2021	22-Jul-2021	✓
EG052G: Silica by Discrete Analyser							
Clear Plastic Bottle - Natural (EG052G)						00.1.1.000.1	
GLMB03	24-Jun-2021				25-Jun-2021	22-Jul-2021	✓
EK026SF: Total CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK026SF) GLMB03	24-Jun-2021				25-Jun-2021	08-Jul-2021	1
	24-0411-2021				LO CUIT-LULI		V

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = With	n holding time
Method	Sample Date	Sample Date Extraction / Preparation				Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P) GLMB03	24-Jun-2021				25-Jun-2021	22-Jul-2021	✓
EK055G: Ammonia as N by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK055G) GLMB03	24-Jun-2021				29-Jun-2021	22-Jul-2021	~
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural (EK057G) GLMB03	24-Jun-2021				25-Jun-2021	26-Jun-2021	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) GLMB03	24-Jun-2021				29-Jun-2021	22-Jul-2021	1
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) GLMB03	24-Jun-2021	29-Jun-2021	22-Jul-2021	~	29-Jun-2021	22-Jul-2021	✓
EK071G: Reactive Phosphorus as P by discrete analyser							
Clear Plastic Bottle - Natural (EK071G) GLMB03	24-Jun-2021				25-Jun-2021	26-Jun-2021	✓
EP005: Total Organic Carbon (TOC)							
Amber TOC Vial - Sulfuric Acid (EP005) GLMB03	24-Jun-2021				28-Jun-2021	22-Jul-2021	~
EP033: C1 - C4 Hydrocarbon Gases							
Amber VOC Vial - Sulfuric Acid (EP033) GLMB03	24-Jun-2021				25-Jun-2021	08-Jul-2021	✓
EP075(SIM)A: Phenolic Compounds							
Amber Glass Bottle - Unpreserved (EP075(SIM)) GLMB03	24-Jun-2021	25-Jun-2021	01-Jul-2021	~	29-Jun-2021	04-Aug-2021	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) GLMB03	24-Jun-2021	25-Jun-2021	01-Jul-2021	~	29-Jun-2021	04-Aug-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) GLMB03	24-Jun-2021	25-Jun-2021	01-Jul-2021	1	29-Jun-2021	04-Aug-2021	~
Amber VOC Vial - Sulfuric Acid (EP080) TB	21-Jun-2021	01-Jul-2021	05-Jul-2021	1	01-Jul-2021	05-Jul-2021	~
Amber VOC Vial - Sulfuric Acid (EP080) GLMB03	24-Jun-2021	01-Jul-2021	08-Jul-2021	~	01-Jul-2021	08-Jul-2021	✓

Page	: 5 of 11
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) GLMB03	24-Jun-2021	25-Jun-2021	01-Jul-2021	~	29-Jun-2021	04-Aug-2021	~
Amber VOC Vial - Sulfuric Acid (EP080) TB	21-Jun-2021	01-Jul-2021	05-Jul-2021	~	01-Jul-2021	05-Jul-2021	~
Amber VOC Vial - Sulfuric Acid (EP080) GLMB03	24-Jun-2021	01-Jul-2021	08-Jul-2021	1	01-Jul-2021	08-Jul-2021	~
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid (EP080) TB, TS	21-Jun-2021	01-Jul-2021	05-Jul-2021	1	01-Jul-2021	05-Jul-2021	~
Amber VOC Vial - Sulfuric Acid (EP080) GLMB03	24-Jun-2021	01-Jul-2021	08-Jul-2021	1	01-Jul-2021	08-Jul-2021	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	6	50	12.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	17	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
oH by PC Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	8	12.50	10.00	~	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	10	20.00	10.00	 Image: A start of the start of	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	0	17	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
_aboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	20	5.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	13	15.38	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	4	50	8.00	8.33	×	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	: 7 of 11
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Analyzes Method OC Resolut Actual Executed Pervaluet Nulle as N (DO: by Dancele Analyser EK0696 1 20 5.00 ✓ NEPM 2013 B 3 A.US OC Slundard Nulle as N (DO: by Dancele Analyser EK0696 1 7 1.429 5.00 ✓ NEPM 2013 B 3 A.US OC Slundard PAH/Fender Analyser EK0759 1 1 7 5.80 ✓ NEPM 2013 B 3 A.US OC Slundard Broder Konson EK0776 1 8 12.20 Solo ✓ NEPM 2013 B 3 A.US OC Slundard Slundard Anions JV (C.Elstronde Method) EX0776 1 8 12.20 Solo ✓ NEPM 2013 B 3 A.US OC Slundard Slundard Anions JV (C.Elstronde Method) EX0776 1 12 8.33 Solo ✓ NEPM 2013 B 3 A.US OC Slundard Slundard Anions JV (C.Elstronde Analyser EX0776 1 12 8.33 Solo ✓ NEPM 2013 B 3 A.US OC Slundard Slundard Anious JV (C.Elstronde Analyser EX0767 3 10 15.00 15.00	Matrix: WATER				Evaluatio	n: 🗴 = Quality Co	ntrol frequency	not within specification ; 🗸 = Quality Control frequency within specificatio
Analysis Control Finance Control Finance Control Finance Analysis Exception Exception 20 5.00 ✓ NEPM 2013 B3 A.A.S.OC Standard Mille ta Vip Devote Analyser Exception 1 77 5.80 ✓ NEPM 2013 B3 A.A.S.OC Standard Pir/ Process Exception Exception 2 00 10.00 ✓ NEPM 2013 B3 A.A.S.OC Standard Pir/ Process Exception Exception 2 00 10.00 ✓ NEPM 2013 B3 A.A.S.OC Standard Standar Anices y U. Classendel Method) Exception Exception 2 0 10.00 ✓ NEPM 2013 B3 A.A.S.OC Standard Standar Anices y U. Classendel Method) Exception Exception 2 10.00 ✓ NEPM 2013 B3 A.A.S.OC Standard Standar Anices y U. Classendel Method) Exception Exception 2 8 2.60 10.00 ✓ NEPM 2013 B3 A.A.S.OC Standard Total Comprisition Standard Anices y U. Classendel Methody Exception 2 8 2.60 <td< th=""><th>Quality Control Sample Type</th><th></th><th></th><th></th><th></th><th>1</th><th></th><th>Quality Control Specification</th></td<>	Quality Control Sample Type					1		Quality Control Specification
Ninite as N NOA () biscrete Analyser EK00000 1 200 5.00 V NEPM 201 BB & ALS CC Simulard PAMPEndot Pankyer EK075 1 7 5.88 5.00 V NEPM 201 BB & ALS CC Simulard PAMPEndot Pankyer EK0716 1 7.84 5.00 V NEPM 201 BB & ALS CC Simulard Pack/Endot Pankyer EK0716 1 5.80 5.00 V NEPM 201 BB & ALS CC Simulard Simulard Anoms -by IC Extended Methon) EK0716 1 6.00 10.00 V NEPM 201 BB & ALS CC Simulard Simulard Anoms -by IC Extended Methon) EE00262 1 0.000 10.00 V NEPM 201 BB & ALS CC Simulard Simulard Anoms -by IC Extended Methon) EE00263 1 0.000 1 V NEPM 201 BB & ALS CC Simulard Simulard Child (righ Leven) EK0676 3 0.00 1 V NEPM 201 BB & ALS CC Simulard Simulard Child (righ Leven) EK0676 1 1 5.84 5.00 V NEPM 201 BB & ALS CC Simulard Sind Child (righ Lev	Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Ninth as N p Discrete Analyser Excorr 1 7 14.29 8.00 V NEPM 2018 B3 A.LS OC Standard PH by PC Diractor EADIS+0 2 20 10.00 V NEPM 2018 B3 A.LS OC Standard PH by PC Diractor EADIS+0 2 20 10.00 V NEPM 2018 B3 A.LS OC Standard Selos (Reachw) by Discrete Analyser EGO202 2 5 40.00 V NEPM 2018 B3 A.LS OC Standard Selos (Reachw) by Discrete Analyser EGO202 2 5 40.00 V NEPM 2018 B3 A.LS OC Standard Selos (Reachw) by Discrete Analyser EGO202 1 2 10.00 V NEPM 2018 B3 A.LS OC Standard Selos (Reachw) by Discrete Analyser EGO401 2 10.00 V NEPM 2018 B3 A.LS OC Standard Total Cognic Coll (Selos (Analyser EGO200 1 20 16.00 V NEPM 2018 B3 A.LS OC Standard Total Cognic Coll (Selos (Analyser EGO201 2 8 0 V NEPM 2018 B3 A.LS OC Standard Total Cognic Coll (Selos (Analyser EGO	Laboratory Control Samples (LCS) - Continued							
PAH/Penci (CDAS-SM) EP075(SM) 1 7 5.80 5.00 V NEPM 2013 B3 A LS OC Standard Peacher Phosphones as P-By Discrete Analyser EXOTE 1 8 12.00 10.00 V NEPM 2013 B3 A LS OC Standard Stand Reactive Phosphones as P-By Discrete Analyser EXOTE 1 8 12.00 10.00 V NEPM 2013 B3 A LS OC Standard Standard Anons -by (C Edotrede Analyser EXOTE A NUMB 1 12.0 8.00 V NEPM 2013 B3 A LS OC Standard Standard Anons -by (C Edotrede Analyser EXOLES + 1 2 10.0 V NEPM 2013 B3 A LS OC Standard Standard Ostels Krigh Level) EXOLES + 1 2 10.00 V NEPM 2013 B3 A LS OC Standard Total Opanic Standard Statis (Figh Level) EXOLES + 1 2 10.00 V NEPM 2013 B3 A LS OC Standard Total Opanic Standard Statis (Figh Level) EXOLES + 1 20.0 10.00 V NEPM 2013 B3 A LS OC Standard Total Opanic Standard Statis (Figh Level) EXOLES + 1 20.0 10.00 V NEPM 2013 B3 A LS OC Standard		EK059G			5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pi by C. Trainer Exorors 2 2 2 0 0.00 · NEPA 2013 B3 & ALS OC Standard Binck Peachwe hosp bacerie Analyser EXOROR EXOROR 1 8 12.66 6.00 · NEPA 2013 B3 & ALS OC Standard Standar Aniona Y. D. (Catardad Method) EXOROR 1 12 8.33 6.00 · NEPA 2013 B3 & ALS OC Standard Standar Aniona Y. D. (Catardad Method) EXOROR 1 12 8.33 6.00 · NEPA 2013 B3 & ALS OC Standard Standar Aniona Y. D. (Catardad Method) EXOROR 1 12 8.33 6.00 · NEPA 2013 B3 & ALS OC Standard Total Davido by Segmented Tice Analyser EXOROR 1 9 5.26 10.00 · NEPA 2013 B3 & ALS OC Standard Total Organic Catardan EP050 1 9 5.26 6.00 · NEPA 2013 B3 & ALS OC Standard Total Organic Catardan EP050 1 9 5.00 · NEPA 2013 B3 & ALS OC Standard Total Organic Catardanse EP031 1		EK057G		-	14.29	5.00	✓	
Reactive Proceptions as P-By Discrete Analyser EXAT/C 1 8 12 5.00 -/ NEPM 2018 18 A.B.S OC Standard Stand Actions by I/C (Extended Method) ED039X 1 12 8.33 5.00 -/ NEPM 2018 18 A.B.S OC Standard Standard Anions by I/C (Extended Method) ED0416 2 0.00 1.000 -// NEPM 2018 18 A.B.S OC Standard Standard Anions by I/C (Extended Method) EA228H 3 20 15.00 1.600 -// NEPM 2018 18 A.B.S OC Standard Total Control Stand Staft (Figh Lever) EA228H 3 20 15.00 1.600 -// NEPM 2018 18 A.B.S OC Standard Total Control Staft Staft (Figh Lever) EA208H 3 20 15.00 -// NEPM 2018 18 A.B.S OC Standard Total Obsorder Staft (Figh Lever) EA018H 3 20 15.00 -// NEPM 2018 18 A.B.S OC Standard Total Obsorder Staft (Figh Lever) EA018H 3 20 5.00 -// NEPM 2018 18 A.B.S OC Standard Total Obsorder Staft (Figh Lever) EA018H 3 2 </td <td>PAH/Phenols (GC/MS - SIM)</td> <td>EP075(SIM)</td> <td></td> <td></td> <td>5.88</td> <td>5.00</td> <td>✓</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	PAH/Phenols (GC/MS - SIM)	EP075(SIM)			5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Silka (Readive) by Ducrete Analyser E 00000 2 5 4000 10.00 ✓ NEPM 2018 38 A.LS OC Standard Submark Anders V(0) (Clotherded Method) ED000x 1 12 10 20.00 10.00 ✓ NEPM 2018 38 A.LS OC Standard Subpended Solits (High Level) EA028H 3 20 16.00 ✓ NEPM 2018 38 A.LS OC Standard Total Cyanic by Signmented Flow Analyser ER028EF 2 8 25.00 10.00 ✓ NEPM 2018 38 A.LS OC Standard Total Opanic Cation ER028EF 2 8 25.00 15.00 NEPM 2018 38 A.LS OC Standard Total Opanic Cation ER005 1 19 5.50 ✓ NEPM 2018 38 A.LS OC Standard Total Opanic Cation ER071 1 17 5.88 5.00 ✓ NEPM 2018 38 A.LS OC Standard Total Opanic Cation ER073 1 20 5.00 5.00 ✓ NEPM 2018 38 A.LS OC Standard Total Opanic Cation ER073 1 20 5.00 ✓ NEPM 2018 38 A.LS OC Standard	pH by PC Titrator	EA005-P			10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sindard Anons -by C (Extended Method) ED0050 1 12 8.33 5.00 · NEPM 2013 B.8 ALS OC Slandard Suspended Solids (High Level) ED0216 2 10 200 11000 · NEPM 2013 B.8 ALS OC Slandard Total Cynnick by Segmented Flow Analyser EK0256F 2 6 25.00 10.00 · NEPM 2013 B.8 ALS OC Slandard Total Disoled Solids (High Level) EK0256F 2 6 25.00 10.00 · NEPM 2013 B.8 ALS OC Slandard Total Disoled Solids (Sight (High Level) EK067C 3 19 15.30 · NEPM 2013 B.8 ALS OC Slandard Total Cognanc Carton EP071 1 17 5.88 5.00 · NEPM 2013 B.8 ALS OC Slandard TRH - Semivolatile Fraction EP071 1 17 5.00 · NEPM 2013 B.8 ALS OC Slandard TRH - Semivolatile Fraction EP070 1 20 5.00 · NEPM 2013 B.8 ALS OC Slandard TRH - Semivolatile Fraction EP070 1 20 5.00 · NEPM 2	Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfare (Turbulemention) as S042 - by Discrete Analyser EDM/HG 2 10 2000 10.00 ✓ NEPK 2013 B3 & ALS OC Standard Total Cyanice by Segmented Flow Analyser EA029H 3 20 15.00 ✓ NEPK 2013 B3 & ALS OC Standard Total Cyanice by Segmented Flow Analyser EA019H 3 20 15.00 ✓ NEPK 2013 B3 & ALS OC Standard Total Organic Catron EA019H 3 20 15.00 ✓ NEPK 2013 B3 & ALS OC Standard Total Organic Catron ER067G 3 19 15.79 15.00 ✓ NEPK 2013 B3 & ALS OC Standard Total Organic Catron EE07T 1 17 5.88 5.00 ✓ NEPK 2013 B3 & ALS OC Standard TRH VolatilesWTEX E000 1 20 5.00 ✓ NEPK 2013 B3 & ALS OC Standard Chorde by Discrete Analyser E0046G 1 13 7.69 5.00 ✓ NEPK 2013 B3 & ALS OC Standard Chorde by Discrete Analyser ED046G 1 13 7.69 5.00 ✓ NEPK 2013	Silica (Reactive) by Discrete Analyser	EG052G	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspende Solids (High Lewi) EAO25H 3 20 15.00 15.00 V NEPM 2018 38 A.LS OC Standard Total Cyanide by Segmented Flow Analyser EKO26SF 2 8 25.00 15.00 V NEPM 2018 38 A.LS OC Standard Total Disolved Solids (High Lewi) EKO87G 3 19 5.76 5.00 V NEPM 2018 38 A.LS OC Standard Total Disolved Solids (High Lewi) EKO87G 3 19 5.76 5.00 V NEPM 2018 38 A.LS OC Standard Total Disolved Analyser EKO87G 3 19 5.76 5.00 V NEPM 2018 38 A.LS OC Standard Total Prosphorus as N Dy Discrete Analyser EKO85G 1 20 5.00 S.00 V NEPM 2018 38 A.LS OC Standard C1 - C4 Gases EPO30 1 20 5.00 S.00 V NEPM 2018 88 A.LS OC Standard C1 - C4 Gases EPO30 1 20 5.00 S.00 V NEPM 2018 88 A.LS OC Standard Disolved Menury by FIMS EGO203F 1 20 S.00	Standard Anions -by IC (Extended Method)	ED009-X	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cynide by Segmented Flow Analyser EK2025F 2 8 25.00 10.00 V NEPM 2018 83 & ALS OC Standard Total Disoloved Solids (High Lovel) EA015H 3 20 15.00 15.00 V NEPM 2018 83 & ALS OC Standard Total Organic Carbon EV007G 3 19 15.79 15.00 V NEPM 2018 83 & ALS OC Standard Total Organic Carbon EV007 1 17 5.88 5.00 V NEPM 2018 83 & ALS OC Standard TRH Volatilex/BETX EV000 1 20 5.00 5.00 V NEPM 2018 83 & ALS OC Standard Method Elanos (MB) V NEPM 2018 83 & ALS OC Standard Standard Standard Standard C1 - C4 Gases EP033 1 20 5.00 S.00 V NEPM 2018 83 & ALS OC Standard Disolved Marcu by FIMS EG035F 1 20 5.00 S.00 V NEPM 2018 83 & ALS OC Standard Disolved Marcu by FIMS EG020-F 1 500 S.00 V NEPM 2018 83 & ALS OC Standard	Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Lavel) EA015H 3 20 15.00 15.00 V NEPM 2013 B3 & ALS OC Standard Total Organic Carbon EF005 1 19 5.26 5.00 V NEPM 2013 B3 & ALS OC Standard Total Drusphous as P By Discrete Analyser EF007 1 17 5.88 5.00 V NEPM 2013 B3 & ALS OC Standard TRH - Semivolatile Fraction EF007 1 17 5.88 5.00 V NEPM 2013 B3 & ALS OC Standard Method Elserke (MB) Annona as N Do Borete analyser E0056 1 20 5.00 5.00 V NEPM 2013 B3 & ALS OC Standard Chordschip ty Discrete Analyser E0056 1 20 5.00 5.00 V NEPM 2013 B3 & ALS OC Standard Chordschip ty PC Triator ED0456 1 13 7.69 5.00 V NEPM 2013 B3 & ALS OC Standard Disolved Metals by ICP-MS - Suite A E00355 1 20 5.00 V NEPM 2013 B3 & ALS OC Standard Disolved Metals by ICP-MS - Suite A E00356 1 </td <td>Suspended Solids (High Level)</td> <td>EA025H</td> <td>3</td> <td>20</td> <td>15.00</td> <td>15.00</td> <td>✓</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon EP005 1 19 5.26 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Phosphorus as P By Discrete Analyser EK067G 3 19 15.79 15.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Voitalies/BTEX EP080 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Mathed Blanks (MD) EP080 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard C1 - GL Gases EP083 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Conductivity by FC Titrator ED045G 1 13 7.68 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Metury by FLMS EG035F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Metury by FLMS EG0320F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Metals by ICP-MS - Suite A EG020AF 1 20 5.00 5.00	Total Cyanide by Segmented Flow Analyser	EK026SF	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Prosphorus as P By Discrete Analyser EK067G 3 19 15.79 15.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Volatiles/BTEX EP080 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Antonoia as N by Discrete analyser EK055G 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Chorde by Discrete Analyser ED045G 1 13 7.69 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Chorde by Discrete Analyser ED045G 1 13 7.69 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020AF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020AF 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG0202AF 1 14	Total Dissolved Solids (High Level)	EA015H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
THH - Semivalatile Fraction EP071 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS OC Standard RTH Volatiles/BTEX EP080 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Annonia as N by Discrete analyser EK0655G 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Chloride by Discrete Analyser ED0466 1 13 7.69 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Conductivity by FC Tirator EA010-P 1 50 2.00 1.67 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metais by ICP-MS - Suite A EG020AF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metais by ICP-MS - Suite A EG020AF 1 20 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metais by ICP-MS - Suite B EG020AF 1 10 10.00 S.00 ✓ NEPM 2013 B3 & ALS OC Standard Nitrite an Nitra'ea N INATE as N INCE as N INCY by Discrete Analyser EK037G 1 <td>Total Organic Carbon</td> <td>EP005</td> <td>1</td> <td>19</td> <td>5.26</td> <td>5.00</td> <td>✓</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	Total Organic Carbon	EP005	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX EP080 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Method Biants (MB) Ammonia as N to Discrete analyser EK055G 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard C1 - C4 Gases ED045G 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Choinde by Discrete Analyser ED045G 1 13 7.89 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Metricury by FINS EG035F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Metals by ICP-MS - Suite A EG0206-F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Metals by ICP-MS - Suite B EG0206-F 1 14 7.14 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Metals by ICP-MS - Suite B EG0206-F 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite an N Itrate as N (NOx) by Discrete Analyser	Total Phosphorus as P By Discrete Analyser	EK067G	3	19	15.79	15.00	~	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB) EK0055G 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard C 1- C4 Gases EP033 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Chloride by Discrete Analyser ED045G 1 13 7.69 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Meruny by FIMS EG035F 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Meruny by FIMS EG035F 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Meruny by FIMS EG020AF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Meruny by FIMS EG020AF 1 14 7.14 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Disolved Meruny Disorte Analyser EK040P 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite an N (N2x) by Discrete Analyser EK057G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	TRH - Semivolatile Fraction	EP071	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser EK6565 1 20 5.00 S.00 V NEPM 2013 B3 & ALS QC Standard C1 - C4 Gases ED0456 1 13 7.69 5.00 V NEPM 2013 B3 & ALS QC Standard Conductivity Dy PC Titrator ED0456 1 50 2.00 I.67 NEPM 2013 B3 & ALS QC Standard Dissolved Mortay Dy FIMS EG035F 1 20 5.00 5.00 V NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020AF 1 20 5.00 5.00 V NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020AF 1 14 7.14 5.00 V NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020BF 1 14 7.4 5.00 V NEPM 2013 B3 & ALS QC Standard Nitrite an N Inbiscrete Analyser EG020BF 1 10 10.00 S.00 V NEPM 2013 B3 & ALS QC Standard Nitrite an N Inbiscrete Analyser EK0576 1 7 1	TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser EK6565 1 20 5.00 S.00 V NEPM 2013 B3 & ALS QC Standard C1 - C4 Gases ED0456 1 13 7.69 5.00 V NEPM 2013 B3 & ALS QC Standard Conductivity Dy PC Titrator ED0456 1 50 2.00 I.67 NEPM 2013 B3 & ALS QC Standard Dissolved Mortay Dy FIMS EG035F 1 20 5.00 5.00 V NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020AF 1 20 5.00 5.00 V NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020AF 1 14 7.14 5.00 V NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020BF 1 14 7.4 5.00 V NEPM 2013 B3 & ALS QC Standard Nitrite an N Inbiscrete Analyser EG020BF 1 10 10.00 S.00 V NEPM 2013 B3 & ALS QC Standard Nitrite an N Inbiscrete Analyser EK0576 1 7 1	Method Blanks (MB)							
Chloride by Discrete Analyser ED0456 1 13 7.69 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Conductivity by PC Titrator EA010-P 1 50 2.00 1.67 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Meraus by ICP-MS Suite A EG020A.F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020A.F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite B EG020A.F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Fluoride by PC Titrator EK040P 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Migr Cations - Dissolved ED05357 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite an N by Discrete Analyser EK0576 1 7 8.8 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Reactive Phosphorus as P-By Discrete Analyser EK057	Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator EA010-P 1 50 2.00 1.67 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Mercury by FIMS EG033F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020AF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020AF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Fluoride by PC Titrator EK040P 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Major Cations - Dissolved ED093F 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrie as N (NOx) by Discrete Analyser EK059G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrie as N by Discrete Analyser EK057G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Sitica (Reactive) by Discrete Analyser EK071G 1	C1 - C4 Gases	EP033	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS EG035F 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020A-F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020A-F 1 14 7.14 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020B-F 1 14 7.14 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Horide by PC Titrator EK040P 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Major Cations - Dissolved ED093F 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite as N (NOx) by Discrete Analyser EK057G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard PAH/Phenois (GC/MS - SIM) E0075(SIM) 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Standard Anions - by IC Catended Method) E0052G 1 5	Chloride by Discrete Analyser	ED045G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A EG020A-F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite B EG020A-F 1 14 7.14 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pluoride by PC Titrator EK040P 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Major Cations - Dissolved ED093F 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite and Nitrate as N (NCx) by Discrete Analyser EK059G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite as N by Discrete Analyser EK057G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Reactive Phosphorus as P-By Discrete Analyser EK057G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Standard Anions -by IC (Extended Method) ED047G (SIM) 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser <td>Conductivity by PC Titrator</td> <td>EA010-P</td> <td>1</td> <td>50</td> <td>2.00</td> <td>1.67</td> <td>~</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	Conductivity by PC Titrator	EA010-P	1	50	2.00	1.67	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite BEG020B-F1147.145.00✓NEPM 2013 B3 & ALS QC StandardFluoride by PC TitratorEK040P1205.005.00✓NEPM 2013 B3 & ALS QC StandardMajor Cations - DissolvedED093F11010.005.00✓NEPM 2013 B3 & ALS QC StandardMitrite and Nitrate as N (NOX) by Discrete AnalyserEK059G1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite and Nitrate as N (NOX) by Discrete AnalyserEK057G1714.295.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1175.885.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardSitica (Reactive) by Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardSundard Anions -by IC (Extended Method)ED009-X1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA023F11010.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEF0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK06	Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC TitratorEK040P1205.00✓NEPM 2013 B3 & ALS QC StandardMajor Cations - DissolvedED093F11010.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite as N by Discrete AnalyserEK057G1714.295.00✓NEPM 2013 B3 & ALS QC StandardPAH/Phenols (GC/MS - SIM)EP075(SIM)1175.885.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1812.505.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardSilida (Anions -by IC (Extended Method)ED09541128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as S04 2- by Discrete AnalyserED041G11010.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as S04 2- by Discrete AnalyserEA025H1815.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as S04 2- by Discrete AnalyserEA025H1815.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as S04 2- by Discrete AnalyserEA025H1815.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow	Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - DissolvedEndogs11010.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite as N by Discrete AnalyserEK057G1714.295.00✓NEPM 2013 B3 & ALS QC StandardPAH/Phenols (GC/MS - SIM)EP075(SIM)1175.885.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1812.505.00✓NEPM 2013 B3 & ALS QC StandardSitica (Reactive) by Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G11010.005.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00 <t< td=""><td>Dissolved Metals by ICP-MS - Suite B</td><td>EG020B-F</td><td>1</td><td>14</td><td>7.14</td><td>5.00</td><td>~</td><td>NEPM 2013 B3 & ALS QC Standard</td></t<>	Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1205.005.00NEPM 2013 B3 & ALS QC StandardNitrite as N by Discrete AnalyserEK057G1714.295.00NEPM 2013 B3 & ALS QC StandardPAH/Phenols (GC/MS - SIM)EP075(SIM)1175.885.00VNEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1812.505.00VNEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1520.005.00VNEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1128.335.00VNEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G11010.005.00VNEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G11010.005.00VNEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G11010.005.00VNEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserEK0256F1812.505.00VNEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserEK0256F1812.505.00VNEPM 2013 B3 & ALS QC StandardTotal Cyanide Disolved Solids (High Level)EA015H1205.005.00V	Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite as N by Discrete AnalyserEK057G1714.295.00✓NEPM 2013 B3 & ALS QC StandardPAH/Phenols (GC/MS - SIM)EP075(SIM)11175.885.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEG052G1812.505.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED019-X11010.005.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level) <td>Major Cations - Dissolved</td> <td>ED093F</td> <td>1</td> <td>10</td> <td>10.00</td> <td>5.00</td> <td>1</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	Major Cations - Dissolved	ED093F	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)EP075(SIM)1175.885.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1812.505.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserEED041G11010.005.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EK026F1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard	Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)EP075(SIM)1175.885.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1812.505.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions - by IC (Extended Method)ED009-X1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G11010.005.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK026SF11010.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEF0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEF0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G<	Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete AnalyserEK071G1812.505.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G11010.005.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEF0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEF0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH	PAH/Phenols (GC/MS - SIM)		1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete AnalyserEG052G1520.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G110010.005.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.00✓NEPM 2013 B3 & ALS QC Standard	Reactive Phosphorus as P-By Discrete Analyser	, , ,	1	8	12.50	5.00		NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)ED009-X1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G11010.005.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK0015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.00✓NEPM 2013 B3 & ALS QC Standard	Silica (Reactive) by Discrete Analyser	EG052G	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G11010.005.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0071175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.00✓NEPM 2013 B3 & ALS QC Standard	Standard Anions -by IC (Extended Method)		1	12	8.33	5.00		NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0071175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard	Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser		1	10	10.00	5.00		NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow AnalyserEK026SF1812.505.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard	· · · · · · · · · · · · · · · · · · ·		1	20	5.00			
Total Dissolved Solids (High Level)EA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard				8	12.50			
Total Organic CarbonEP0051195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard			1	20				
Total Phosphorus as P By Discrete AnalyserEK067G1195.265.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard								
TRH - Semivolatile Fraction EP071 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Volatiles/BTEX EP080 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard				19				
TRH Volatiles/BTEXEP0801205.005.00√NEPM 2013 B3 & ALS QC Standard								
	Matrix Spikes (MS)	21 000					• •	

Page	: 8 of 11
Work Order	: ES2123587
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEN GAS PROJECT J200417

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specifica
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Vitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	17	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fotal Organic Carbon	EP005	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	0	17	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Standard Anions -by IC (Extended Method)	ED009-X	WATER	In house: Referenced to APHA 4110B. This method is compliant with NEPM Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Silica (Reactive) by Discrete Analyser	EG052G	WATER	In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM Schedule B(3).
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
C1 - C4 Gases	EP033	WATER	Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity.
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

CERTIFICATE OF ANALYSIS

Work Order	ES2141417	Page	: 1 of 13
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: Claire Corthier	Contact	: Sepan Mahamad
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61 2 8784 8555
Project	: AGL CAMDEM GAS PROJECT J210490	Date Samples Received	: 16-Nov-2021 11:30
Order number	:	Date Analysis Commenced	: 16-Nov-2021
C-O-C number	:	Issue Date	: 23-Nov-2021 18:27
Sampler	: Claire Corthier, Lachlan Lewis		Iac-MRA NATA
Site	:		
Quote number	: SY/416/16 - AGL Camden Planned Event		Accreditation No. 825
No. of samples received	: 9		Accredited for compliance with
No. of samples analysed	: 9		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - ^ = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- ED041G:LOR raised due to sample matrix.
- TDS by method EA-015 may bias high for sample 6 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- EN055: Ionic Balance out of acceptable limits for sample ES2141417-#002 due to analytes not quantified in this report.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	MPMB01	MPMB02	MPMB03	MPMB04
		Sampli	ng date / time	15-Nov-2021 15:55	15-Nov-2021 09:25	15-Nov-2021 11:45	15-Nov-2021 10:00	15-Nov-2021 11:00
Compound	CAS Number	LOR	Unit	ES2141417-001	ES2141417-002	ES2141417-003	ES2141417-004	ES2141417-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.70	5.75	6.71	7.84	8.91
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	4780	736	816	1050	387
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	3010	436	456	605	228
A025: Total Suspended Solids dried	at 104 + 2°C							
Suspended Solids (SS)		5	mg/L	71	11	15	12	8
D037P: Alkalinity by PC Titrator								1
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	54
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1710	33	177	498	80
Total Alkalinity as CaCO3		1	mg/L	1710	33	177	498	134
D041G: Sulfate (Turbidimetric) as S	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	3	6	<1	<1
ED045G: Chloride by Discrete Analys			<u> </u>					1
Chloride	16887-00-6	1	mg/L	777	218	168	74	29
D093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	275	8	31	89	4
Magnesium	7439-95-4	1	mg/L	69	16	30	22	2
Sodium	7440-23-5	1	mg/L	836	90	76	106	73
Potassium	7440-09-7	1	mg/L	32	1	3	13	7
EG020F: Dissolved Metals by ICP-MS			-					
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.01	<0.01	<0.01	<0.01
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	0.007	<0.001	0.006	0.005	<0.001
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Barium	7440-39-3	0.001	mg/L	19.3	0.506	0.489	3.12	0.552
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt	7440-48-4	0.001	mg/L	0.004	0.033	0.002	0.001	<0.001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	0.002	<0.001	<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	0.113	0.367	0.186	0.080	0.005
Nickel	7440-02-0	0.001	mg/L	0.016	0.012	0.002	<0.001	<0.001

Page : 4 of 13 Work Order : ES2141417 Client : EMM CONSULTING PTY LTD Project : AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	MPMB01	MPMB02	MPMB03	MPMB04
		Samplin	g date / time	15-Nov-2021 15:55	15-Nov-2021 09:25	15-Nov-2021 11:45	15-Nov-2021 10:00	15-Nov-2021 11:00
Compound	CAS Number	LOR	Unit	ES2141417-001	ES2141417-002	ES2141417-003	ES2141417-004	ES2141417-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-	-MS - Continued							
Lead	7439-92-1	0.001	mg/L	0.007	<0.001	<0.001	<0.001	<0.001
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	13.6	0.034	<0.005	<0.005	0.024
Molybdenum	7439-98-7	0.001	mg/L	0.002	<0.001	<0.001	<0.001	0.001
Strontium	7440-24-6	0.001	mg/L	5.17	0.098	0.349	0.847	0.121
Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	7439-89-6	0.05	mg/L	5.72	0.10	3.90	2.27	<0.05
Bromine	7726-95-6	0.1	mg/L	1.7	0.4	0.3	0.1	<0.1
EG035F: Dissolved Mercury by FII	MS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG052G: Silica by Discrete Analys								1
Reactive Silica		0.05	mg/L	10.5	16.4	11.3	8.38	2.13
EK026SF: Total CN by Segmented								
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	<0.004	<0.004	< 0.004
-	57-12-5	0.001	ing/2		0.001		-0.001	10.001
EK040P: Fluoride by PC Titrator Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.1	0.1	0.2
		0.1	mg/L	-0.1	-0.1	0.1	0.1	0.2
EK055G: Ammonia as N by Discre		0.01			10.01			
Ammonia as N	7664-41-7	0.01	mg/L	2.40	<0.01	0.09	0.89	0.48
EK057G: Nitrite as N by Discrete	-							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete	Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.47	<0.01	<0.01	<0.01
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.48	<0.01	<0.01	<0.01
EK067G: Total Phosphorus as P b	ov Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.70	0.02	0.03	0.02	<0.01
EK071G: Reactive Phosphorus as	P by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.09	<0.01	0.01	<0.01	<0.01
EN055: Ionic Balance								
Ø Total Anions		0.01	meg/L	56.1	6.87	8.40	12.0	3.50
Ø Total Cations		0.01	meq/L			7.61		
Ø Total Cations		0.01	· · ·	56.6	5.66		11.2	3.72
		0.01	meq/L	0.00	5.00		11.2	3.72

Page	5 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	MPMB01	MPMB02	MPMB03	MPMB04
		Sampli	ng date / time	15-Nov-2021 15:55	15-Nov-2021 09:25	15-Nov-2021 11:45	15-Nov-2021 10:00	15-Nov-2021 11:00
Compound	CAS Number	LOR	Unit	ES2141417-001	ES2141417-002	ES2141417-003	ES2141417-004	ES2141417-005
				Result	Result	Result	Result	Result
EN055: Ionic Balance - Continued								
lonic Balance		0.01	%			4.97		
Ø Ionic Balance		0.01	%	0.44	9.70		3.63	3.09
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	10	<1	<1	<1	4
EP033: C1 - C4 Hydrocarbon Gases								
Methane	74-82-8	10	µg/L	13200	13	348	45300	44400
Ethene	74-85-1	10	µg/L	<10	<10	<10	<10	<10
Ethane	74-84-0	10	µg/L	66	<10	<10	<10	<10
Propene	115-07-1	10	μg/L	<10	<10	<10	<10	<10
Propane	74-98-6	10	µg/L	<10	<10	<10	<10	<10
Butene	25167-67-3	10	µg/L	<10	<10	<10	<10	<10
Butane	106-97-8	10	µg/L	<10	<10	<10	<10	<10
P075(SIM)A: Phenolic Compounds								
Phenol	108-95-2	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	<2.0	<2.0	<2.0
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chloro-3-methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.6-Trichlorophenol	88-06-2	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pentachlorophenol	87-86-5	2.0	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
P075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0

Page : 6 of 13 Work Order : ES2141417 Client : EMM CONSULTING PTY LTD Project : AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	MPMB01	MPMB02	MPMB03	MPMB04
		Samplii	ng date / time	15-Nov-2021 15:55	15-Nov-2021 09:25	15-Nov-2021 11:45	15-Nov-2021 10:00	15-Nov-2021 11:0
Compound	CAS Number	LOR	Unit	ES2141417-001	ES2141417-002	ES2141417-003	ES2141417-004	ES2141417-005
			-	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic I	Hydrocarbons - Cont	inued						
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
^ Sum of polycyclic aromatic hydrocarbo		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	μg/L	<100	<100	<100	<100	<100
C29 - C36 Fraction		50	µg/L	<50	<50	<50	<50	<50
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio						
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	<20	<20
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	<20	<20	<20	<20
(F1)								
>C10 - C16 Fraction		100	μg/L	<100	<100	<100	<100	<100
>C16 - C34 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C16 Fraction minus Naphthalene	,	100	µg/L	<100	<100	<100	<100	<100
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	8
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
^ Total Xylenes		2	μg/L	<2	<2	<2	<2	<2
^ Sum of BTEX		1	μg/L	<1	<1	<1	<1	8
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	<5	<5

Page	: 7 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GLMB03	MPMB01	MPMB02	MPMB03	MPMB04
		Sampli	ng date / time	15-Nov-2021 15:55	15-Nov-2021 09:25	15-Nov-2021 11:45	15-Nov-2021 10:00	15-Nov-2021 11:00
Compound	CAS Number	LOR	Unit	ES2141417-001	ES2141417-002	ES2141417-003	ES2141417-004	ES2141417-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ED009: Anions								
Bromide	24959-67-9	0.010	mg/L	1.35	0.356	0.242	0.019	0.050
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	1.0	%	18.0	21.2	19.8	20.5	17.0
2-Chlorophenol-D4	93951-73-6	1.0	%	37.9	45.3	46.8	45.5	21.2
2.4.6-Tribromophenol	118-79-6	1.0	%	52.8	68.0	63.8	58.5	21.5
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	53.1	57.1	57.0	55.6	64.9
Anthracene-d10	1719-06-8	1.0	%	74.0	82.1	74.6	84.5	77.0
4-Terphenyl-d14	1718-51-0	1.0	%	84.8	91.6	83.9	95.3	84.9
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	101	75.7	99.3	131	132
Toluene-D8	2037-26-5	2	%	97.3	81.2	102	102	102
4-Bromofluorobenzene	460-00-4	2	%	95.9	85.1	95.3	101	98.4

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	NR	QA1	ТВ	TS	
		Sampli	ng date / time	15-Nov-2021 11:30	15-Nov-2021 00:00	11-Nov-2021 00:00	10-Nov-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2141417-006	ES2141417-013	ES2141417-014	ES2141417-015	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.85	9.19			
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	355	393			
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	255	224			
EA025: Total Suspended Solids dried	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	14	<5			
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1			
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	56			
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	85	74			
Total Alkalinity as CaCO3		1	mg/L	85	129			
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	14	3			
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	52	31			
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	11	4			
Magnesium	7439-95-4	1	mg/L	8	2			
Sodium	7440-23-5	1	mg/L	48	74			
Potassium	7440-09-7	1	mg/L	6	7			
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.02	<0.01			
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001			
Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001			
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05			
Barium	7440-39-3	0.001	mg/L	0.094	0.568			
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001			
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001			
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001			
Copper	7440-50-8	0.001	mg/L	0.002	<0.001			
Manganese	7439-96-5	0.001	mg/L	0.016	0.002			
Nickel	7440-02-0	0.001	mg/L	0.002	<0.001			

Page : 9 of 13 Work Order : ES2141417 Client : EMM CONSULTING PTY LTD Project : AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	NR	QA1	ТВ	TS	
		Samplir	ng date / time	15-Nov-2021 11:30	15-Nov-2021 00:00	11-Nov-2021 00:00	10-Nov-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2141417-006	ES2141417-013	ES2141417-014	ES2141417-015	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-	MS - Continued							
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001			
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01			
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01			
Zinc	7440-66-6	0.005	mg/L	<0.005	0.025			
Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.001			
Strontium	7440-24-6	0.001	mg/L	0.098	0.125			
Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001			
Iron	7439-89-6	0.05	mg/L	0.16	<0.05			
Bromine	7726-95-6	0.1	mg/L	0.1	<0.1			
EG035F: Dissolved Mercury by FIM	NS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001			
EG052G: Silica by Discrete Analys	er							
Reactive Silica		0.05	mg/L	4.97	2.14			
EK026SF: Total CN by Segmented	Flow Analyser							
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004			
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.2			
EK055G: Ammonia as N by Discret	te Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.47			
EK057G: Nitrite as N by Discrete A								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01			
EK058G: Nitrate as N by Discrete								
Nitrate as N	14797-55-8	0.01	mg/L	0.28	<0.01			
				0.20				
EK059G: Nitrite plus Nitrate as N (Nitrite + Nitrate as N	NOX) by Discrete Ana	0.01	mg/L	0.28	<0.01			
		0.01	mg/L	0.20	~0.01			
EK067G: Total Phosphorus as P by		0.01	mc/l	0.08	<0.01			
Total Phosphorus as P		0.01	mg/L	0.08	NU.U1			
EK071G: Reactive Phosphorus as					10.04			
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	<0.01			
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	3.46	3.51			
Ø Total Cations		0.01	meq/L	3.45	3.76			
ø lonic Balance		0.01	%	0.12	3.40			

Page : 10 of 13 Work Order : ES2141417 Client : EMM CONSULTING PTY LTD Project : AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	NR	QA1	ТВ	TS	
		Sampli	ng date / time	15-Nov-2021 11:30	15-Nov-2021 00:00	11-Nov-2021 00:00	10-Nov-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2141417-006	ES2141417-013	ES2141417-014	ES2141417-015	
				Result	Result	Result	Result	
EP005: Total Organic Carbon (T	'OC)							
Total Organic Carbon		1	mg/L	10	4			
EP033: C1 - C4 Hydrocarbon Ga	ises							
Methane	74-82-8	10	µg/L	<10	43200			
Ethene	74-85-1	10	µg/L	<10	<10			
Ethane	74-84-0	10	µg/L	<10	<10			
Propene	115-07-1	10	µg/L	<10	<10			
Propane	74-98-6	10	µg/L	<10	<10			
Butene	25167-67-3	10	µg/L	<10	<10			
Butane	106-97-8	10	µg/L	<10	<10			
EP075(SIM)A: Phenolic Compou	unds							
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0			
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0			
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0			
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0			
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0			
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0			
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0			
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0			
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0			
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0			
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0			
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	<2.0			
EP075(SIM)B: Polynuclear Arom	natic Hydrocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0			
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0			
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0			
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0			
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0			
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0			
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0			
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0			
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0			
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0			

Page : 11 of 13 Work Order : ES2141417 Client : EMM CONSULTING PTY LTD Project : AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	NR	QA1	ТВ	TS	
		Samplii	ng date / time	15-Nov-2021 11:30	15-Nov-2021 00:00	11-Nov-2021 00:00	10-Nov-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2141417-006	ES2141417-013	ES2141417-014	ES2141417-015	
				Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued						
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0			
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0			
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0			
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0			
^ Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5			
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20		
C10 - C14 Fraction		50	µg/L	<50	<50			
C15 - C28 Fraction		100	µg/L	<100	<100			
C29 - C36 Fraction		50	µg/L	<50	<50			
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50			
EP080/071: Total Recoverable Hydrocar	rbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20		
(F1)								
>C10 - C16 Fraction		100	µg/L	<100	<100			
>C16 - C34 Fraction		100	µg/L	<100	<100			
>C34 - C40 Fraction		100	µg/L	<100	<100			
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100			
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100			
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	16	
Toluene	108-88-3	2	µg/L	<2	7	<2	16	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	15	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	15	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	14	
^ Total Xylenes		2	µg/L	<2	<2	<2	29	
^ Sum of BTEX		1	µg/L	<1	7	<1	76	
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	17	
ED009: Anions								
Bromide	24959-67-9	0.010	mg/L	0.100	0.051			

Page	: 12 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	NR	QA1	ТВ	TS	
		Sampli	ing date / time	15-Nov-2021 11:30	15-Nov-2021 00:00	11-Nov-2021 00:00	10-Nov-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2141417-006	ES2141417-013	ES2141417-014	ES2141417-015	
				Result	Result	Result	Result	
EP075(SIM)S: Phenolic Compound Sur	rogates							
Phenol-d6	13127-88-3	1.0	%	16.4	18.0			
2-Chlorophenol-D4	93951-73-6	1.0	%	31.8	20.9			
2.4.6-Tribromophenol	118-79-6	1.0	%	52.0	22.1			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	54.7	64.5			
Anthracene-d10	1719-06-8	1.0	%	62.3	74.1			
4-Terphenyl-d14	1718-51-0	1.0	%	67.2	82.0			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	129	119	130	126	
Toluene-D8	2037-26-5	2	%	103	92.0	96.9	93.7	
4-Bromofluorobenzene	460-00-4	2	%	97.0	89.9	95.3	94.4	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QUALITY CONTROL REPORT

Work Order	: ES2141417	Page	: 1 of 12	
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydr	ney
Contact	: Claire Corthier	Contact	: Sepan Mahamad	
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Sr	nithfield NSW Australia 2164
Telephone	:	Telephone	: +61 2 8784 8555	
Project	: AGL CAMDEM GAS PROJECT J210490	Date Samples Received	: 16-Nov-2021	
Order number	:	Date Analysis Commenced	: 16-Nov-2021	
C-O-C number	:	Issue Date	: 23-Nov-2021	
Sampler	: Claire Corthier, Lachlan Lewis			HAC-MRA NATA
Site	:			
Quote number	: SY/416/16 - AGL Camden Planned Event			Accreditation No. 825
No. of samples received	: 9			Accredited for compliance with
No. of samples analysed	: 9			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
D009: Anions (QC	Lot: 4018791)								
ES2141417-001	GLMB03	ED009-X: Bromide	24959-67-9	0.01	mg/L	1.35	1.35	0.0	0% - 20%
ES2141504-001	Anonymous	ED009-X: Bromide	24959-67-9	0.01	mg/L	1.01	1.02	0.9	0% - 20%
EA005P: pH by PC T	itrator (QC Lot: 4018	181)							
ES2141498-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.55	7.74	2.5	0% - 20%
ES2141417-001	GLMB03	EA005-P: pH Value		0.01	pH Unit	7.70	7.73	0.4	0% - 20%
EA010P: Conductivi	y by PC Titrator (QC	Lot: 4018182)							
ES2141525-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1100	1100	0.0	0% - 20%
ES2141417-001	GLMB03	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	4780	4730	1.1	0% - 20%
EA015: Total Dissol	red Solids dried at 18	0 ± 5 °C (QC Lot: 4024248)							
ES2141252-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	457	472	3.3	0% - 20%
ES2141417-004	MPMB03	EA015H: Total Dissolved Solids @180°C		10	mg/L	605	598	1.1	0% - 20%
EA025: Total Susper	ded Solids dried at 1	04 ± 2°C (QC Lot: 4024249)							
ES2141252-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	11	8	34.7	No Limit
ES2141417-004	MPMB03	EA025H: Suspended Solids (SS)		5	mg/L	12	12	0.0	No Limit
ED037P: Alkalinity b	y PC Titrator (QC Lot	t: 4018184)							
ES2141417-001	GLMB03	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1710	1740	1.5	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	1710	1740	1.5	0% - 20%
D041G: Sulfate (Tu	rbidimetric) as SO4 2	- by DA (QC Lot: 4018209)							
ES2141417-001	GLMB03	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	<10	0.0	No Limit
D045G: Chloride by	Discrete Analyser (QC Lot: 4018210)							
ES2141417-001	GLMB03	ED045G: Chloride	16887-00-6	1	mg/L	777	782	0.7	0% - 20%

Page	: 3 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
ED093F: Dissolved I	Major Cations (QC Lo	ot: 4024290)									
ES2141360-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	13	13	0.0	0% - 50%		
		ED093F: Magnesium	7439-95-4	1	mg/L	2	2	0.0	No Limit		
		ED093F: Sodium	7440-23-5	1	mg/L	13	13	0.0	0% - 50%		
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit		
ES2141223-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	139	138	0.0	0% - 20%		
		ED093F: Magnesium	7439-95-4	1	mg/L	54	53	0.0	0% - 20%		
		ED093F: Sodium	7440-23-5	1	mg/L	49	48	0.0	0% - 20%		
		ED093F: Potassium	7440-09-7	1	mg/L	14	14	0.0	0% - 50%		
G020F: Dissolved	Metals by ICP-MS (Q	C Lot: 4024289)									
ES2141381-002	Anonymous	EG020B-F: Strontium	7440-24-6	0.001	mg/L	0.096	0.094	2.1	0% - 20%		
	-	EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
ES2141223-002	Anonymous	EG020B-F: Strontium	7440-24-6	0.001	mg/L	0.517	0.521	0.7	0% - 20%		
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	0.002	0.002	0.0	No Limit		
G020F: Dissolved	Metals by ICP-MS (Q				_						
ES2141381-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
	, mongine ao	EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.021	0.020	0.0	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.001	0.001	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.099	0.096	3.5	0% - 20%		
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.004	0.004	0.0	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	< 0.005	< 0.005	0.0	No Limit		
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.01	0.01	0.0	No Limit		
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	< 0.01	<0.01	0.0	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	< 0.05	<0.05	0.0	No Limit		
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.10	0.09	12.8	No Limit		
		EG020A-F: Bromine	7726-95-6	0.1	mg/L	<0.1	<0.1	0.0	No Limit		
ES2141433-003	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.642	0.647	0.8	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	< 0.001	0.0	No Limit		
		EG020A-F: Coholt	7440-48-4	0.001	mg/L	0.008	0.008	0.0	No Limit		

Page	: 4 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved	Metals by ICP-MS	(QC Lot: 4024291) - continued							
ES2141433-003	Anonymous	EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	4.03	4.01	0.3	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.008	0.008	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.005	0.005	0.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.06	0.06	0.0	No Limit
		EG020A-F: Bromine	7726-95-6	0.1	mg/L	0.8	0.8	0.0	No Limit
EG035F: Dissolved	Mercury by FIMS (QC Lot: 4024287)							
ES2141223-003	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2141378-005	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG035F: Dissolved	Mercury by FIMS (QC Lot: 4024293)							
ES2141417-006	NR	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG052G: Silica by	Discrete Analyser (QC Lot: 4018208)							
ES2141417-001	GLMB03	EG052G: Reactive Silica		0.05	mg/L	10.5	10.3	1.5	0% - 20%
EK026SF: Total CI	by Segmented Flo	w Analyser (QC Lot: 4022978)							
ES2141334-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit
ES2140778-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	< 0.004	<0.004	0.0	No Limit
EK026SF: Total CI	by Seamented Flo	w Analyser (QC Lot: 4022981)							
ES2141417-013	QA1	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	< 0.004	0.0	No Limit
WN2113254-006	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	< 0.004	0.0	No Limit
EK040P: Fluoride b	oy PC Titrator (QC L								
ES2141417-001	GLMB03	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
EK055G: Ammonia	as N by Discrete A	nalyser (QC Lot: 4024186)							
ES2141417-003	MPMB02	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.09	0.09	0.0	No Limit
ES2141329-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	2.80	2.89	3.4	0% - 20%
		yser (QC Lot: 4018206)							
ES2141417-001	GLMB03	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite pl		by Discrete Analyser (QC Lot: 4024185)			3				
ES2141417-003	MPMB02	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2141329-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	11.0	11.0	0.0	0% - 20%
		screte Analyser (QC Lot: 4024182)		0.01	ing/L	11.0	11.0	0.1	0,0 20,0
ES2141118-001				0.01	ma/l	<0.01	<0.01	0.0	No Limit
	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2141411-002	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<u><u></u> <u></u> </u>	<0.01	0.0	No Limit

Page	5 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER					-	Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
K071G: Reactive P	Phosphorus as P by d	iscrete analyser (QC Lot: 4018207)							
ES2141417-001	GLMB03	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.09	0.09	0.0	No Limit
P005: Total Organi	ic Carbon (TOC) (QC	Lot: 4019185)							
ES2141187-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	28	27	0.0	0% - 20%
ES2141417-001	GLMB03	EP005: Total Organic Carbon		1	mg/L	10	10	0.0	0% - 50%
P033: C1 - C4 Hyd	rocarbon Gases (QC	Lot: 4023122)							
ES2141417-001	GLMB03	EP033: Methane	74-82-8	10	µg/L	13200	13000	2.0	0% - 20%
		EP033: Ethene	74-85-1	10	µg/L	<10	<10	0.0	No Limit
		EP033: Ethane	74-84-0	10	µg/L	66	65	2.3	No Limit
		EP033: Propene	115-07-1	10	µg/L	<10	<10	0.0	No Limit
		EP033: Propane	74-98-6	10	µg/L	<10	<10	0.0	No Limit
		EP033: Butene	25167-67-3	10	µg/L	<10	<10	0.0	No Limit
		EP033: Butane	106-97-8	10	µg/L	<10	<10	0.0	No Limit
ES2141433-006 Anonymous	EP033: Methane	74-82-8	10	µg/L	<10	<10	0.0	No Limit	
	EP033: Ethene	74-85-1	10	µg/L	<10	<10	0.0	No Limit	
		EP033: Ethane	74-84-0	10	µg/L	<10	<10	0.0	No Limit
		EP033: Propene	115-07-1	10	µg/L	<10	<10	0.0	No Limit
		EP033: Propane	74-98-6	10	µg/L	<10	<10	0.0	No Limit
		EP033: Butene	25167-67-3	10	µg/L	<10	<10	0.0	No Limit
		EP033: Butane	106-97-8	10	µg/L	<10	<10	0.0	No Limit
P080/071: Total Pe	etroleum Hydrocarbon	ns (QC Lot: 4022332)							
ES2141223-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
ES2141417-001	GLMB03	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 4022332)							
ES2141223-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit
ES2141417-001	GLMB03	EP080: C6 - C10 Fraction	 C6_C10	20	µg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	: Lot: 4022332)								
ES2141223-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit
S2141417-001	GLMB03	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit

Page	: 6 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER						Laboratory D	ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC L	ot: 4022332) - continued								
ES2141417-001	GLMB03	EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED009: Anions (QCLot: 4018791)									
ED009-X: Bromide	24959-67-9	0.01	mg/L	<0.010	2 mg/L	96.6	93.0	109	
EA005P: pH by PC Titrator (QCLot: 4018181)									
EA005-P: pH Value			pH Unit		4 pH Unit	100	98.8	101	
					7 pH Unit	100	99.2	101	
A010P: Conductivity by PC Titrator (QCLot: 401	18182)								
A010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	220 µS/cm	92.1	91.1	107	
			-	<1	2100 µS/cm	98.9	93.2	108	
A015: Total Dissolved Solids dried at 180 ± 5 °C	(QCLot: 4024248)								
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	96.8	87.0	109	
				<10	293 mg/L	108	75.2	126	
				<10	2835 mg/L	104	83.0	124	
A025: Total Suspended Solids dried at 104 ± 2°C	C (QCLot: 4024249)								
A025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	93.3	83.0	129	
				<5	1000 mg/L	101	82.0	110	
				<5	463 mg/L	102	83.0	118	
D037P: Alkalinity by PC Titrator (QCLot: 401818	84)								
D037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	103	81.0	111	
,					50 mg/L	116	80.0	120	
D041G: Sulfate (Turbidimetric) as SO4 2- by DA	(QCLot: 4018209)								
D041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	102	82.0	122	
			-	<1	500 mg/L	104	82.0	122	
D045G: Chloride by Discrete Analyser (QCLot:	4018210)								
D045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	101	80.9	127	
			-	<1	1000 mg/L	102	80.9	127	
ED093F: Dissolved Major Cations (QCLot: 40242	90)								
D093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	97.0	80.0	114	
D093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	96.9	90.0	116	
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	96.6	82.0	120	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	93.8	85.0	113	
G020F: Dissolved Metals by ICP-MS (QCLot: 40	24289)				_	I			
G020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	95.2	81.0	113	
	7440-61-1	0.001	mg/L	< 0.001	0.1 mg/L	95.6	85.0	115	

Page	: 8 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER			· · · · · · · · · · · · · · · · · · ·	Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 4024291) - co	ntinued							
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	93.4	80.0	116
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	0.02 mg/L	96.1	70.0	130
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	94.2	85.0	114
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	96.8	85.0	115
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	97.5	82.0	110
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	98.2	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	98.3	85.0	111
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	94.1	82.0	112
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	91.6	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.1	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	95.9	82.0	110
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	99.6	79.0	113
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	93.1	82.0	112
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	92.9	85.0	115
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	98.0	83.0	109
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	92.4	81.0	117
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	99.7	85.0	115
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	101	82.0	112
EG020A-F: Bromine	7726-95-6	0.1	mg/L	<0.1				
EG020F: Dissolved Metals by ICP-MS (QCLot: 4024292)								
EG020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	94.6	81.0	113
EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001	0.1 mg/L	98.6	85.0	115
EG035F: Dissolved Mercury by FIMS (QCLot: 4024287)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	97.9	83.0	105
EG035F: Dissolved Mercury by FIMS (QCLot: 4024293)								
EG035F: Dissolved Mercury by FIMS (QCLOI: 4024233)	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	96.8	83.0	105
			g, =		olo i ingi 2			
EG052G: Silica by Discrete Analyser (QCLot: 4018208)		0.05	~~~/l	<0.05	E ma/l	94.2	92.0	118
EG052G: Reactive Silica		0.05	mg/L	<0.05	5 mg/L 0.5 mg/L	94.2 104	92.0 80.0	110
				-0.00	0.0 mg/L		00.0	120
EK026SF: Total CN by Segmented Flow Analyser (QCLot: 40		0.004		10.004	0.0		70.0	100
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	111	73.0	133
EK026SF: Total CN by Segmented Flow Analyser (QCLot: 40								
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	123	73.0	133
EK040P: Fluoride by PC Titrator (QCLot: 4018183)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	110	82.0	116
EK055G: Ammonia as N by Discrete Analyser (QCLot: 40241	86)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	105	90.0	114

Page	: 9 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK057G: Nitrite as N by Discrete Analyser (QCLot: 401820	06)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	102	82.0	114
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy	ser (QCLot: 402	4185)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	103	91.0	113
EK067G: Total Phosphorus as P by Discrete Analyser (QC	Lot: 4024182)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	95.1	71.0	101
				<0.01	0.442 mg/L	105	72.0	108
				<0.01	1 mg/L	110	70.0	130
K071G: Reactive Phosphorus as P by discrete analyser(QCLot: 4018207)						
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	101	85.0	117
EP005: Total Organic Carbon (TOC) (QCLot: 4019185)								
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	91.2	72.0	120
EP033: C1 - C4 Hydrocarbon Gases (QCLot: 4023122)								
EP033: Methane	74-82-8	10	μg/L	<10	28.48 µg/L	95.9	86.0	114
EP033: Ethene	74-85-1	10	µg/L	<10	50.29 µg/L	95.5	87.0	111
EP033: Ethane	74-84-0	10	µg/L	<10	54.43 µg/L	96.9	87.0	111
EP033: Propene	115-07-1	10	µg/L	<10	73.97 µg/L	96.3	85.0	113
EP033: Propane	74-98-6	10	μg/L	<10	78.28 µg/L	97.1	84.0	112
EP033: Butene	25167-67-3	10	μg/L	<10	99.61 µg/L	99.1	83.0	115
EP033: Butane	106-97-8	10	µg/L	<10	102.18 µg/L	98.4	85.0	115
EP075(SIM)A: Phenolic Compounds (QCLot: 4019342)								
EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 µg/L	40.9	24.5	61.9
EP075(SIM): 2-Chlorophenol	95-57-8	1	µg/L	<1.0	5 µg/L	75.6	52.0	90.0
EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<1.0	5 µg/L	74.4	51.0	91.0
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	µg/L	<2.0	10 µg/L	60.5	44.0	88.0
EP075(SIM): 2-Nitrophenol	88-75-5	1	μg/L	<1.0	5 µg/L	73.6	48.0	100
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	µg/L	<1.0	5 µg/L	72.9	49.0	99.0
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	µg/L	<1.0	5 µg/L	78.7	53.0	105
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 µg/L	70.6	57.0	105
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<1.0	5 µg/L	71.6	53.0	99.0
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<1.0	5 µg/L	83.8	50.0	106
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 µg/L	71.7	51.0	105
EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 µg/L	44.2	10.0	95.0
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	t: 4019342)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 µg/L	66.1	50.0	94.0
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 µg/L	73.3	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 µg/L	67.9	62.2	113
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 µg/L	91.2	63.9	115
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 µg/L	72.1	62.6	116

Page	: 10 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	oons (QCLot: 4019342) - cor	ntinued						
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 µg/L	79.2	64.3	116
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	80.0	63.6	118
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	82.8	63.1	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	68.9	64.1	117
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	75.8	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	µg/L	<1.0	5 µg/L	72.4	61.7	119
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	83.5	63.0	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	87.8	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	78.9	59.9	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	67.3	61.2	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	69.9	59.1	118
EP080/071: Total Petroleum Hydrocarbons(Q0	CLot: 4019343)							
EP071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	70.2	55.8	112
EP071: C15 - C28 Fraction		100	µg/L	<100	600 µg/L	75.4	71.6	113
EP071: C29 - C36 Fraction		50	µg/L	<50	400 µg/L	87.0	56.0	121
EP080/071: Total Petroleum Hydrocarbons(Q0	CLot: 4022332)							
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	95.6	75.0	127
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCL	ot: 4019343)						
EP071: >C10 - C16 Fraction		100	µg/L	<100	500 μg/L	73.2	57.9	119
EP071: >C16 - C34 Fraction		100	µg/L	<100	700 µg/L	82.1	62.5	110
EP071: >C34 - C40 Fraction		100	µg/L	<100	300 µg/L	70.0	61.5	121
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCL	ot: 4022332)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 µg/L	84.3	75.0	127
EP080: BTEXN (QCLot: 4022332)								
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	90.5	70.0	122
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	93.9	69.0	123
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	90.5	70.0	120
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	10 µg/L	88.2	69.0	121
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	94.7	72.0	122
EP080: Naphthalene	91-20-3	5	µg/L	<5	10 µg/L	98.9	70.0	120

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER

Page	: 11 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

ub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable Limits			
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
D009: Anions (C	CLot: 4018791)								
ES2141417-001	GLMB03	ED009-X: Bromide	24959-67-9	0.2 mg/L	# Not	70.0	130		
					Determined				
D041G: Sulfate (1	Turbidimetric) as SO4 2- by DA (QCLot: 4018209)								
ES2141417-001	GLMB03	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	107	70.0	130		
D045G: Chloride	by Discrete Analyser (QCLot: 4018210)								
ES2141417-001	GLMB03	ED045G: Chloride	16887-00-6	50 mg/L	# Not	70.0	130		
				5	Determined				
EG020F: Dissolved	Metals by ICP-MS (QCLot: 4024291)						1		
ES2141381-003	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	90.6	70.0	130		
		EG020A-F: Arsenic EG020A-F: Beryllium	7440-38-2	1 mg/L	93.6	70.0	130		
	EG020A-F: Berjindin EG020A-F: Barium	7440-39-3	1 mg/L	89.3	70.0	130			
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	91.0	70.0	130		
	EG020A-F: Chromium	7440-47-3	1 mg/L	89.0	70.0	130			
	EG020A-F: Cobalt	7440-48-4	1 mg/L	83.7	70.0	130			
	EG020A-F: Copper	7440-50-8	1 mg/L	87.9	70.0	130			
		EG020A-F: Lead	7439-92-1	1 mg/L	82.0	70.0	130		
		EG020A-F: Manganese	7439-96-5	1 mg/L	90.9	70.0	130		
		EG020A-F: Nickel	7440-02-0	1 mg/L	88.1	70.0	130		
		EG020A-F: Vanadium	7440-62-2	1 mg/L	89.5	70.0	130		
		EG020A-F: Zinc	7440-66-6	1 mg/L	90.0	70.0	130		
EG035F: Dissolved	I Mercury by FIMS (QCLot: 4024287)								
ES2141223-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	91.6	70.0	130		
EG035F: Dissolved	Mercury by FIMS (QCLot: 4024293)						1		
ES2141417-005	MPMB04	EG035F: Mercury	7439-97-6	0.01 mg/L	95.4	70.0	130		
	Discrete Analyser (QCLot: 4018208)			stor mg/E			100		
ES2141417-001	GLMB03			5 mg/L	103	70.0	130		
		EG052G: Reactive Silica		5 mg/L	100	70.0	130		
	N by Segmented Flow Analyser (QCLot: 4022978)								
ES2140778-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	93.1	70.0	130		
EK026SF: Total C	N by Segmented Flow Analyser (QCLot: 4022981)								
ES2141417-013	QA1	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	106	70.0	130		
EK040P: <u>Fluoride l</u>	by PC Titrator (QCLot: 4018183)								
ES2141417-001	GLMB03	EK040P: Fluoride	16984-48-8	5 mg/L	105	70.0	130		
	a as N by Discrete Analyser (QCLot: 4024186)			5					
ES2141329-001			7664-41-7	1 mg/l	70.8	70.0	130		
E32141329-001	Anonymous	EK055G: Ammonia as N	/004-41-/	1 mg/L	10.0	70.0	130		

Page	: 12 of 12
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)		
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
K057G: Nitrite a	s N by Discrete Analyser (QCLot: 4018206) - continue	1							
ES2141417-001	GLMB03	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	117	70.0	130		
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4	024185)							
ES2141329-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not	70.0	130		
					Determined				
K067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 4024182)								
ES2141329-001	Anonymous	EK067G: Total Phosphorus as P		10 mg/L	114	70.0	130		
				10 mg/2					
ES2141417-001	Phosphorus as P by discrete analyser (QCLot: 401820		44905 44 0	0.5 mm/	07.0	70.0	100		
	GLMB03	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	97.6	70.0	130		
The second s	anic Carbon (TOC) (QCLot: 4019185)								
ES2141187-002	Anonymous	EP005: Total Organic Carbon		100 mg/L	105	70.0	130		
P033: C1 - C4 Hy	drocarbon Gases (QCLot: 4023122)								
ES2141417-002	MPMB01	EP033: Methane	74-82-8	28.48 µg/L	104	70.0	130		
	EP033: Ethene	74-85-1	50.29 µg/L	96.1	70.0	130			
		EP033: Ethane	74-84-0	54.43 µg/L	97.7	70.0	130		
		EP033: Propene	115-07-1	73.97 µg/L	105	70.0	130		
		EP033: Propane	74-98-6	78.28 µg/L	106	70.0	130		
		EP033: Butene	25167-67-3	99.61 µg/L	98.0	70.0	130		
		EP033: Butane	106-97-8	102.18 µg/L	99.2	70.0	130		
P080/071: Total I	Petroleum Hydrocarbons (QCLot: 4022332)								
ES2141223-001	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	101	70.0	130		
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 4022332)							
ES2141223-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 µg/L	96.2	70.0	130		
EP080: BTEXN (C	OCI ot: 4022332)		_		1 1				
ES2141223-001	Anonymous	EP080: Benzene	71-43-2	25 µg/L	91.1	70.0	130		
		EP080: Toluene	108-88-3	25 µg/L	94.5	70.0	130		
		EP080: Ethylbenzene	100-41-4	25 µg/L	93.7	70.0	130		
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	92.7	70.0	130		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	25 µg/L	95.6	70.0	130		
		EP080: Naphthalene	91-20-3	25 µg/L	84.2	70.0	130		

QA/QC Compliance Assessment to assist with Quality Review								
: ES2141417	Page	: 1 of 13						
	Laboratory	: Environmental Division Sydney						
: Claire Corthier	Telephone	: +61 2 8784 8555						
: AGL CAMDEM GAS PROJECT J210490	Date Samples Received	: 16-Nov-2021						
:	Issue Date	: 23-Nov-2021						
: Claire Corthier, Lachlan Lewis	No. of samples received	: 9						
:	No. of samples analysed	: 9						
	ES2141417 EMM CONSULTING PTY LTD Claire Corthier AGL CAMDEM GAS PROJECT J210490 Claire Corthier, Lachlan Lewis	: ES2141417 Page : EMM CONSULTING PTY LTD Laboratory : Claire Corthier Telephone : AGL CAMDEM GAS PROJECT J210490 Date Samples Received : Issue Date : Claire Corthier, Lachlan Lewis No. of samples received						

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED009: Anions	ES2141417001	GLMB03	Bromide	24959-67-9	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
ED045G: Chloride by Discrete Analyser	ES2141417001	GLMB03	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ar	ES2141329001	Anonymous	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method		Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
					overdue			overdue
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural								
GLMB03,	MPMB01,					16-Nov-2021	15-Nov-2021	1
MPMB02,	MPMB03,							
MPMB04,	NR,							
QA1								

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	Count Rate (%) Qu		e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	19	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	7	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	19	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	7	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Page	: 3 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER					Evaluatior	n: × = Holding time	breach ; 🗸 = With	in holding time.	
Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA005P: pH by PC Titrator									
Clear Plastic Bottle - Natural (EA005-P)									
GLMB03,	MPMB01,	15-Nov-2021				16-Nov-2021	15-Nov-2021	x	
MPMB02,	MPMB03,								
MPMB04,	NR,								
QA1									
EA010P: Conductivity by PC Titrator									
Clear Plastic Bottle - Natural (EA010-P)							10 5 0001		
GLMB03,	MPMB01,	15-Nov-2021				16-Nov-2021	13-Dec-2021	✓	
MPMB02,	MPMB03,								
MPMB04,	NR,								
QA1									
EA015: Total Dissolved Solids dried at 180 ± 5 °C									
Clear Plastic Bottle - Natural (EA015H)							00.11 0004		
GLMB03,	MPMB01,	15-Nov-2021				19-Nov-2021	22-Nov-2021	✓	
MPMB02,	MPMB03,								
MPMB04,	NR,								
QA1									
EA025: Total Suspended Solids dried at 104 ± 2°C									
Clear Plastic Bottle - Natural (EA025H)									
GLMB03,	MPMB01,	15-Nov-2021				19-Nov-2021	22-Nov-2021	✓	
MPMB02,	MPMB03,								
MPMB04,	NR,								
QA1									
ED009: Anions									
Clear Plastic Bottle - Natural (ED009-X)									
GLMB03,	MPMB01,	15-Nov-2021				17-Nov-2021	13-Dec-2021	\checkmark	
MPMB02,	MPMB03,								
MPMB04,	NR,								
QA1									
ED037P: Alkalinity by PC Titrator									
Clear Plastic Bottle - Natural (ED037-P)									
GLMB03,	MPMB01,	15-Nov-2021				16-Nov-2021	29-Nov-2021	✓	
MPMB02,	MPMB03,								
MPMB04,	NR,								
QA1									
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA									
Clear Plastic Bottle - Natural (ED041G)									
GLMB03,	MPMB01,	15-Nov-2021				16-Nov-2021	13-Dec-2021	✓	
MPMB02,	MPMB03,								
MPMB04,	NR,								
QA1									

Page	: 4 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER				Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED045G: Chloride by Discrete Analyser							
Clear Plastic Bottle - Natural (ED045G)							
GLMB03, MPMB01,	15-Nov-2021				16-Nov-2021	13-Dec-2021	✓
MPMB02, MPMB03,							
MPMB04, NR,							
QA1							
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)							
GLMB03, MPMB01,	15-Nov-2021				19-Nov-2021	13-Dec-2021	1
MPMB02, MPMB03,							
MPMB04, NR,							
QA1							
EG020F: Dissolved Metals by ICP-MS							<u> </u>
Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)							
GLMB03, MPMB01,	15-Nov-2021				19-Nov-2021	14-May-2022	✓
MPMB02, MPMB03,						-	
MPMB04, NR,							
QA1							
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)							
GLMB03, MPMB01,	15-Nov-2021				19-Nov-2021	13-Dec-2021	1
MPMB02, MPMB03,							•
MPMB04, NR,							
QA1							
EG052G: Silica by Discrete Analyser					1		
Clear Plastic Bottle - Natural (EG052G) GLMB03, MPMB01,	15-Nov-2021				16-Nov-2021	13-Dec-2021	
	13-1100-2021				10-100-2021	10-060-2021	✓
MPMB02, MPMB03,							
MPMB04, NR,							
QA1							
EK026SF: Total CN by Segmented Flow Analyser							
Opaque plastic bottle - NaOH (EK026SF)						00 No. 000 f	
GLMB03, MPMB01,	15-Nov-2021				18-Nov-2021	29-Nov-2021	✓
MPMB02, MPMB03,							
MPMB04, NR,							
QA1							
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P)							
GLMB03, MPMB01,	15-Nov-2021				16-Nov-2021	13-Dec-2021	✓
MPMB02, MPMB03,							
MPMB04, NR,							

Page	: 5 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER					Evaluation	:: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
GLMB03,	MPMB01,	15-Nov-2021				19-Nov-2021	13-Dec-2021	✓
MPMB02,	MPMB03,							
MPMB04,	NR,							
QA1								
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
GLMB03,	MPMB01,	15-Nov-2021				16-Nov-2021	17-Nov-2021	✓
MPMB02,	MPMB03,							
MPMB04,	NR,							
QA1								
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
GLMB03,	MPMB01,	15-Nov-2021				19-Nov-2021	13-Dec-2021	✓
MPMB02,	MPMB03,							
MPMB04,	NR,							
QA1								
EK067G: Total Phosphorus as P by Discrete Analyse	er							
Clear Plastic Bottle - Sulfuric Acid (EK067G)								
GLMB03,	MPMB01,	15-Nov-2021	19-Nov-2021	13-Dec-2021	1	19-Nov-2021	13-Dec-2021	✓
MPMB02,	MPMB03,							
MPMB04,	NR,							
QA1								
EK071G: Reactive Phosphorus as P by discrete anal	yser							
Clear Plastic Bottle - Natural (EK071G)								
GLMB03,	MPMB01,	15-Nov-2021				16-Nov-2021	17-Nov-2021	✓
MPMB02,	MPMB03,							
MPMB04,	NR,							
QA1								
EP005: Total Organic Carbon (TOC)								
Amber TOC Vial - Sulfuric Acid (EP005)								
GLMB03,	MPMB01,	15-Nov-2021				17-Nov-2021	13-Dec-2021	✓
MPMB02,	MPMB03,							
MPMB04,	NR,							
QA1								
EP033: C1 - C4 Hydrocarbon Gases								
Amber VOC Vial - Sulfuric Acid (EP033)								
GLMB03,	MPMB01,	15-Nov-2021				18-Nov-2021	29-Nov-2021	✓
MPMB02,	MPMB03,							
MPMB04,	NR,							
QA1	-,							
					-			

Page	: 6 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)A: Phenolic Compounds								
Amber Glass Bottle - Unpreserved (EP075(SIM)) GLMB03, MPMB02, MPMB04, QA1	MPMB01, MPMB03, NR,	15-Nov-2021	17-Nov-2021	22-Nov-2021	~	22-Nov-2021	27-Dec-2021	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s							
Amber Glass Bottle - Unpreserved (EP075(SIM)) GLMB03, MPMB02, MPMB04, QA1	MPMB01, MPMB03, NR,	15-Nov-2021	17-Nov-2021	22-Nov-2021	1	22-Nov-2021	27-Dec-2021	~
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071) GLMB03, MPMB02, MPMB04, QA1	MPMB01, MPMB03, NR,	15-Nov-2021	17-Nov-2021	22-Nov-2021	5	22-Nov-2021	27-Dec-2021	1
Amber VOC Vial - Sulfuric Acid (EP080) TB		11-Nov-2021	22-Nov-2021	25-Nov-2021	1	22-Nov-2021	25-Nov-2021	1
Amber VOC Vial - Sulfuric Acid (EP080) GLMB03, MPMB02, MPMB04, QA1	MPMB01, MPMB03, NR,	15-Nov-2021	22-Nov-2021	29-Nov-2021	1	22-Nov-2021	29-Nov-2021	~
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) GLMB03, MPMB02, MPMB04, QA1	MPMB01, MPMB03, NR,	15-Nov-2021	17-Nov-2021	22-Nov-2021	J	22-Nov-2021	27-Dec-2021	1
Amber VOC Vial - Sulfuric Acid (EP080) TB		11-Nov-2021	22-Nov-2021	25-Nov-2021	~	22-Nov-2021	25-Nov-2021	1
Amber VOC Vial - Sulfuric Acid (EP080) GLMB03, MPMB02, MPMB04, QA1	MPMB01, MPMB03, NR,	15-Nov-2021	22-Nov-2021	29-Nov-2021	1	22-Nov-2021	29-Nov-2021	~

Page	: 7 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER					Evaluatior	n: × = Holding time	e breach ; ✓ = With	in holding time.
Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080) TS		10-Nov-202	22-Nov-2021	24-Nov-2021	~	22-Nov-2021	24-Nov-2021	✓
Amber VOC Vial - Sulfuric Acid (EP080) TB		11-Nov-202	22-Nov-2021	25-Nov-2021	1	22-Nov-2021	25-Nov-2021	1
Amber VOC Vial - Sulfuric Acid (EP080) GLMB03, MPMB02, MPMB04, QA1	MPMB01, MPMB03, NR,	15-Nov-202	22-Nov-2021	29-Nov-2021	1	22-Nov-2021	29-Nov-2021	•

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	19	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	7	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	4	32	12.50	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	7	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	8	25.00	8.33	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	23	8.70	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	13	15.38	5.00	~	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	: 9 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER	Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control freque						
Quality Control Sample Type			ount		Rate (%)	Frielrich	Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	4	32	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	7	14.29	5.00	- -	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	8	12.50	1.67		NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	23	8.70	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	13	15.38	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	8	12.50	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	8	12.50	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED000 X	1	7	14.29	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	32	6.25	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	20	5.00	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	 	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EF005 EK067G	1	20	5.00	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	ER007G EP071	1	7	14.29	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP071 EP080	1	20	5.00	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)	EP080	ŕ	20	5.00	5.00	v	

Page	: 10 of 13
Work Order	: ES2141417
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER				Evaluatio	n: 🗴 = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Ammonia as N by Discrete analyser	EK055G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	19	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	7	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Standard Anions -by IC (Extended Method)	ED009-X	WATER	In house: Referenced to APHA 4110B. This method is compliant with NEPM Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Silica (Reactive) by Discrete Analyser	EG052G	WATER	In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM Schedule B(3).
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
C1 - C4 Gases	EP033	WATER	Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity.
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

CERTIFICATE OF ANALYSIS

Work Order	ES2213055	Page	: 1 of 9	
Client	EMM CONSULTING PTY LTD	Laboratory	Environmental Division Sydney	
Contact	: Claire Corthier	Contact	: Sepan Mahamad	
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	
Telephone	:	Telephone	: +61 2 8784 8555	
Project	: AGL CAMDEM GAS PROJECT J210490	Date Samples Received	: 13-Apr-2022 16:45	
Order number	:	Date Analysis Commenced	: 14-Apr-2022	
C-O-C number	:	Issue Date	22-Apr-2022 15:52	
Sampler	: Claire Corthier		IC-MRA NA	IA
Site				
Quote number	: SY/416/16 - AGL Camden Planned Event		Accreditation	10 975
No. of samples received	: 6		Accredited for compliance	
No. of samples analysed	: 6		ISO/IEC 17025 -	esting

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB01	MPMB02	NR	QA1	Trip blank
		Sampli	ng date / time	13-Apr-2022 10:30	13-Apr-2022 11:30	13-Apr-2022 12:00	13-Apr-2022 00:00	11-Apr-2022 00:00
Compound	CAS Number	LOR	Unit	ES2213055-001	ES2213055-002	ES2213055-003	ES2213055-004	ES2213055-005
			-	Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.12	6.99	6.83	6.07	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	708	300	113	709	
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	434	150	69	396	
EA025: Total Suspended Solids dried	at 104 + 2°C							
Suspended Solids (SS)		5	mg/L	283	69	6	238	
ED037P: Alkalinity by PC Titrator								1
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	21	86	17	18	
Total Alkalinity as CaCO3		1	mg/L	21	86	17	18	
ED041G: Sulfate (Turbidimetric) as S0	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	4	8	6	4	
ED045G: Chloride by Discrete Analys								
Chloride	16887-00-6	1	mg/L	214	38	16	215	
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	9	11	4	9	
Magnesium	7439-95-4	1	mg/L	17	12	3	17	
Sodium	7400-23-5	1	mg/L	92	30	12	93	
Potassium	7440-09-7	1	mg/L	1	3	2	1	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.03	0.10	0.23	0.02	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.005	<0.001	<0.001	
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Barium	7440-39-3	0.001	mg/L	0.436	0.137	0.025	0.443	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Cobalt	7440-48-4	0.001	mg/L	0.028	0.009	<0.001	0.028	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Manganese	7439-96-5	0.001	mg/L	0.353	0.269	0.158	0.357	
Nickel	7440-02-0	0.001	mg/L	0.010	0.008	<0.001	0.011	

Page : 4 of 9 Work Order : ES2213055 Client : EMM CONSULTING PTY LTD Project : AGL CAMDEM GAS PROJECT J210490

Gub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB01	MPMB02	NR	QA1	Trip blank
		Samplii	ng date / time	13-Apr-2022 10:30	13-Apr-2022 11:30	13-Apr-2022 12:00	13-Apr-2022 00:00	11-Apr-2022 00:00
Compound	CAS Number	LOR	Unit	ES2213055-001	ES2213055-002	ES2213055-003	ES2213055-004	ES2213055-005
				Result	Result	Result	Result	Result
G020F: Dissolved Metals by ICP	-MS - Continued							
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Zinc	7440-66-6	0.005	mg/L	0.030	0.005	0.010	0.028	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Strontium	7440-24-6	0.001	mg/L	0.097	0.118	0.030	0.097	
Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Iron	7439-89-6	0.05	mg/L	<0.05	1.38	0.48	<0.05	
Bromine	7726-95-6	0.1	mg/L	0.5	0.1	<0.1	0.4	
EG035F: Dissolved Mercury by FI	MS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
G052G: Silica by Discrete Analys	sor							I
Reactive Silica		0.05	mg/L	16.0	6.35	4.35	16.0	
K026SF: Total CN by Segmente			5					
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	<0.004	<0.004	
	51-12-5	0.001	ing/E				0.001	
EK040P: Fluoride by PC Titrator	16984-48-8	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	
		0.1	iiig/E	-0.1	-0.1	-0.1	-0.1	
K055G: Ammonia as N by Discre		0.01	ma # //		A 07	0.07	10.01	
Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.07	0.07	<0.01	
K057G: Nitrite as N by Discrete								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete	Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.66	0.02	0.21	0.64	
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.66	0.02	0.21	0.64	
EK067G: Total Phosphorus as P t	ov Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.10	0.07	0.03	0.11	
K071G: Reactive Phosphorus as	P by discrete analyser							
Reactive Phosphorus as P	14265-44-2		mg/L	<0.01	<0.01	<0.01	0.03	
N055: Ionic Balance								
a Total Anions		0.01	meg/L	6.54	2.96	0.92	6.51	
Total Cations		0.01	meq/L	5.88	2.92	1.02	5.92	
Ø Ionic Balance		0.01	%	5.35			4.74	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB01	MPMB02	NR	QA1	Trip blank
		Sampli	ng date / time	13-Apr-2022 10:30	13-Apr-2022 11:30	13-Apr-2022 12:00	13-Apr-2022 00:00	11-Apr-2022 00:00
Compound	CAS Number	LOR	Unit	ES2213055-001	ES2213055-002	ES2213055-003	ES2213055-004	ES2213055-005
				Result	Result	Result	Result	Result
EP005: Total Organic Carbon (T	OC)							
Total Organic Carbon		1	mg/L	<1	6	7	<1	
P033: C1 - C4 Hydrocarbon Ga	ses							
Methane	74-82-8	10	µg/L	<10	83	126	<10	
Ethene	74-85-1	10	µg/L	<10	<10	<10	<10	
Ethane	74-84-0	10	µg/L	<10	<10	<10	<10	
Propene	115-07-1	10	µg/L	<10	<10	<10	<10	
Propane	74-98-6	10	µg/L	<10	<10	<10	<10	
Butene	25167-67-3	10	µg/L	<10	<10	<10	<10	
Butane	106-97-8	10	µg/L	<10	<10	<10	<10	
EP075(SIM)A: Phenolic Compou	inds							
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	<2.0	<2.0	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	<2.0	<2.0	<2.0	
EP075(SIM)B: Polynuclear Arom	atic Hvdrocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	

Page	: 6 of 9
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB01	MPMB02	NR	QA1	Trip blank
		Sampli	ng date / time	13-Apr-2022 10:30	13-Apr-2022 11:30	13-Apr-2022 12:00	13-Apr-2022 00:00	11-Apr-2022 00:00
Compound	CAS Number	LOR	Unit	ES2213055-001	ES2213055-002	ES2213055-003	ES2213055-004	ES2213055-005
			-	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Con	inued						
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	
N Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	μg/L	<50	<50	<50	<50	
C15 - C28 Fraction		100	µg/L	<100	<100	<100	<100	
C29 - C36 Fraction		50	µg/L	<50	<50	<50	<50	
C10 - C36 Fraction (sum)		50	µg/L	<50	<50	<50	<50	
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	<20	<20
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20	<20	<20
(F1)	_							
>C10 - C16 Fraction		100	µg/L	<100	<100	<100	<100	
>C16 - C34 Fraction		100	µg/L	<100	<100	<100	<100	
>C34 - C40 Fraction		100	µg/L	<100	<100	<100	<100	
>C10 - C40 Fraction (sum)		100	µg/L	<100	<100	<100	<100	
>C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	<100	<100	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2	<2	<2
• Total Xylenes		2	µg/L	<2	<2	<2	<2	<2
Sum of BTEX		1	µg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	<5
ED009: Anions								
Bromide	24959-67-9	0.010	mg/L	0.401	0.088	0.050	0.390	

Page	: 7 of 9
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB01	MPMB02	NR	QA1	Trip blank
		Sampli	ng date / time	13-Apr-2022 10:30	13-Apr-2022 11:30	13-Apr-2022 12:00	13-Apr-2022 00:00	11-Apr-2022 00:00
Compound	CAS Number	LOR	Unit	ES2213055-001	ES2213055-002	ES2213055-003	ES2213055-004	ES2213055-005
				Result	Result	Result	Result	Result
EP075(SIM)S: Phenolic Compound St	urrogates							
Phenol-d6	13127-88-3	1.0	%	25.5	28.2	22.2	24.7	
2-Chlorophenol-D4	93951-73-6	1.0	%	55.5	61.2	48.7	56.0	
2.4.6-Tribromophenol	118-79-6	1.0	%	59.7	65.6	54.9	64.2	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	74.0	81.7	63.2	71.8	
Anthracene-d10	1719-06-8	1.0	%	73.7	78.7	66.6	76.6	
4-Terphenyl-d14	1718-51-0	1.0	%	72.7	77.6	67.2	77.9	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	115	122	118	111	107
Toluene-D8	2037-26-5	2	%	106	116	112	102	99.5
4-Bromofluorobenzene	460-00-4	2	%	101	119	105	96.6	94.8

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Trip spike	 	
		Sampli	ng date / time	13-Apr-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2213055-006	 	
				Result	 	
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	18	 	
Toluene	108-88-3	2	µg/L	16	 	
Ethylbenzene	100-41-4	2	µg/L	17	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	16	 	
ortho-Xylene	95-47-6	2	µg/L	17	 	
^ Total Xylenes		2	µg/L	33	 	
^ Sum of BTEX		1	µg/L	84	 	
Naphthalene	91-20-3	5	µg/L	18	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	112	 	
Toluene-D8	2037-26-5	2	%	101	 	
4-Bromofluorobenzene	460-00-4	2	%	104	 	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QUALITY CONTROL REPORT

Work Order	: ES2213055	Page	: 1 of 13	
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney	
Contact	: Claire Corthier	Contact	: Sepan Mahamad	
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	
Telephone	:	Telephone	: +61 2 8784 8555	
Project	: AGL CAMDEM GAS PROJECT J210490	Date Samples Received	: 13-Apr-2022	
Order number	:	Date Analysis Commenced	: 14-Apr-2022	
C-O-C number	:	Issue Date	22-Apr-2022	
Sampler	: Claire Corthier		ac-MRA NAT	A
Site	:			
Quote number	: SY/416/16 - AGL Camden Planned Event		Accreditation No	
No. of samples received	: 6		Accredited for compliance	
No. of samples analysed	: 6		ISO/IEC 17025 - Te	sting

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
ED009: Anions (QC	CLot: 4291342)								
ES2212885-001	Anonymous	ED009-X: Bromide	24959-67-9	0.01	mg/L	0.146	0.146	0.0	0% - 50%
EA005P: pH by PC T	itrator (QC Lot: 429	00129)							
ES2211906-020	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.37	7.41	0.5	0% - 20%
ES2212927-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.07	8.11	0.5	0% - 20%
EA005P: pH by PC T	itrator (QC Lot: 429	00136)							
ES2213072-011	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.09	7.37	3.9	0% - 20%
ES2213055-003	NR	EA005-P: pH Value		0.01	pH Unit	6.83	6.78	0.7	0% - 20%
EA010P: Conductivi	ty by PC Titrator (Q	C Lot: 4290130)							
ES2212814-004	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	65	65	0.0	0% - 20%
ES2213072-007	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	390	386	1.0	0% - 20%
ES2211906-020	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	6910	7000	1.3	0% - 20%
ES2213055-001	MPMB01	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	708	719	1.6	0% - 20%
ES2212927-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	915	929	1.4	0% - 20%
ES2213055-003	NR	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	113	110	2.7	0% - 20%
EA015: Total Dissol	ved Solids dried at 1	180 ± 5 °C (QC Lot: 4289590)							
ES2212776-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	5620	5820	3.4	0% - 20%
ES2212896-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	508	530	4.2	0% - 20%
EA015: Total Dissol	ved Solids dried at 1	180 ± 5 °C (QC Lot: 4290212)							
ES2212884-004	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	6170	6160	0.2	0% - 20%
ES2213003-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	11500	11200	3.2	0% - 20%
EA025: Total Suspe	nded Solids dri <u>ed at</u>	104 ± 2°C (QC Lot: 4289591)							
ES2212776-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	39	45	14.3	No Limit
ES2212896-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	34	35	4.3	No Limit

Page	: 3 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EA025: Total Susp	ended Solids dried at	104 ± 2°C (QC Lot: 4290213)									
ES2212884-004	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	14	8	54.9	No Limit		
ES2213003-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	92	94	1.9	0% - 50%		
ED037P: Alkalinity	by PC Titrator (QC Lo	ot: 4290135)									
ES2213055-001	MPMB01	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	21	21	0.0	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	21	21	0.0	0% - 20%		
ES2213055-003	NR	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	17	16	10.0	0% - 50%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	17	16	10.0	0% - 50%		
ED041G: Sulfate (T	urbidimetric) as SO4	2- by DA (QC Lot: 4288808)									
ES2213017-011	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	12	12	0.0	0% - 50%		
ES2212989-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	113	114	0.0	0% - 20%		
ED041G: Sulfate (T	-	2- by DA (QC Lot: 4288813)			U U						
ES2213095-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	33	33	0.0	0% - 20%		
ES2213055-003	NR	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	6	6	0.0	No Limit		
	by Discrete Analyser			-			-				
ES2213017-011	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	19	19	0.0	0% - 50%		
ES2212989-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	444	447	0.0	0% - 20%		
	by Discrete Analyser		10001 00 0		ing/E			0.1	070 2070		
			40007.00.0	4		40	40	0.0	00(500(
ES2213055-003	NR	ED045G: Chloride	16887-00-6	1	mg/L	16	16	0.0	0% - 50%		
	Major Cations (QC L										
ES2212665-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	77	76	0.0	0% - 20%		
		ED093F: Magnesium	7439-95-4	1	mg/L	6	6	0.0	No Limit		
		ED093F: Sodium	7440-23-5	1	mg/L	242	239	1.4	0% - 20%		
		ED093F: Potassium	7440-09-7	1	mg/L	6	5	0.0	No Limit		
EW2201747-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	51	51	0.0	0% - 20%		
		ED093F: Magnesium	7439-95-4	1	mg/L	35	35	0.0	0% - 20%		
		ED093F: Sodium	7440-23-5	1	mg/L	69	69	0.0	0% - 20%		
		ED093F: Potassium	7440-09-7	1	mg/L	4	4	0.0	No Limit		
EG020F: Dissolved	Metals by ICP-MS (C	C Lot: 4290909)									
ES2212709-001	Anonymous	EG020B-F: Strontium	7440-24-6	0.001	mg/L	0.383	0.393	2.4	0% - 20%		
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
EG020F: Dissolved	Metals by ICP-MS (C	C Lot: 4290910)									
ES2212790-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		

Page	: 4 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

ub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
aboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%		
G020F: Dissolved I	Metals by ICP-MS (QC	CLot: 4290910) - continued									
S2212790-005	Anonymous	EG020A-F: Barium	7440-39-3	0.001	mg/L	0.021	0.019	11.0	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.013	0.012	9.4	0% - 50%		
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit		
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit		
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit		
		EG020A-F: Bromine	7726-95-6	0.1	mg/L	<0.1	<0.1	0.0	No Limit		
W2201747-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.254	0.250	2.0	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.002	0.002	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.254	0.256	0.6	0% - 20%		
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.009	0.009	0.0	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	< 0.005	0.006	20.7	No Limit		
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.0	No Limit		
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	< 0.05	<0.05	0.0	No Limit		
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.25	0.25	0.0	No Limit		
		EG020A-F: Bromine	7726-95-6	0.1	mg/L	0.2	0.1	0.0	No Limit		
G035F: Dissolved I	Mercury by FIMS (QC										
S2212339-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.1 µg/L	<0.0001	0.0	No Limit		
S2212535-001 S2212682-009	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.1 µg/L <0.0001	<0.0001	0.0	No Limit		
			1400 81-0	0.0001		-0.0001	-0.0001	0.0			
G052G: Silica by D S2213017-006	iscrete Analyser (QC			0.05		1.00	4.70	4.0	00/ 000/		
5//1301/-00b	Anonymous	EG052G: Reactive Silica		0.05	mg/L	1.62	1.70	4.8	0% - 20%		

Page	5 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
K026SF: Total Cl	N by Segmented Flow	Analyser (QC Lot: 4287057) - continued									
CA2202469-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit		
ES2212836-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit		
K040P: Fluoride I	by PC Titrator (QC Lot	: 4290134)									
ES2213055-001	MPMB01	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit		
ES2213055-003	NR	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit		
K055G: Ammonia	as N by Discrete Ana	lyser (QC Lot: 4291346)									
ES2213055-001	MPMB01	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	<0.01	0.0	No Limit		
K057G: Nitrite as	N by Discrete Analys				_						
S2212989-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.39	0.39	0.0	0% - 20%		
S2213055-003	NR	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		by Discrete Analyser (QC Lot: 4291345)			5						
S2212953-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	38.4	39.4	2.4	0% - 20%		
S2212955-001	MPMB01	EK059G: Nitrite + Nitrate as N EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.66	0.66	0.0	0% - 20%		
	-	rete Analyser (QC Lot: 4291350)		0.01	ing/E	0.00	0.00	0.0	070 2070		
S2212916-001				0.01	ma/l	0.12	0.14	14.9	No Limit		
S2212916-001	Anonymous Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L mg/L	0.12	0.14	0.0	0% - 50%		
	-	EK067G: Total Phosphorus as P		0.01	IIIg/L	0.20	0.29	0.0	0 % - 30 %		
	-	iscrete analyser (QC Lot: 4288810)									
S2213017-006	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	< 0.01	<0.01	0.0	No Limit		
ES2212989-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		iscrete analyser (QC Lot: 4288812)									
ES2213055-003	NR	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
P005: Total Orga	nic Carbon (TOC) (QC	Lot: 4286980)									
ES2212951-005	Anonymous	EP005: Total Organic Carbon		1	mg/L	85	87	2.0	0% - 20%		
ES2212988-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	7	7	0.0	No Limit		
P033: C1 - C4 Hy	drocarbon Gases (QC	Lot: 4288661)									
M2206596-001	Anonymous	EP033: Methane	74-82-8	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Ethene	74-85-1	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Ethane	74-84-0	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Propene	115-07-1	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Propane	74-98-6	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Butene	25167-67-3	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Butane	106-97-8	10	µg/L	<10	<10	0.0	No Limit		
M2206709-006	Anonymous	EP033: Methane	74-82-8	10	µg/L	2800	3130	11.0	0% - 20%		
		EP033: Ethene	74-85-1	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Ethane	74-84-0	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Propene	115-07-1	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Propane	74-98-6	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Butene	25167-67-3	10	µg/L	<10	<10	0.0	No Limit		

Page	: 6 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP033: C1 - C4 Hydi	rocarbon Gases (QC I	Lot: 4288661) - continued							
EM2206709-006	Anonymous	EP033: Butane	106-97-8	10	µg/L	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 4291434)							
ES2212853-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
ES2213043-008	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 4291434)							
ES2212853-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit
ES2213043-008	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 4291434)								
ES2212853-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES2213043-008	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED009: Anions (QCLot: 4291342)								
ED009-X: Bromide	24959-67-9	0.01	mg/L	<0.010	2 mg/L	101	93.0	109
EA005P: pH by PC Titrator (QCLot: 4290129)								
EA005-P: pH Value			pH Unit		4 pH Unit	99.8	98.8	101
					7 pH Unit	100	99.2	101
EA005P: pH by PC Titrator (QCLot: 4290136)								
EA005-P: pH Value			pH Unit		4 pH Unit	100	98.8	101
					7 pH Unit	99.8	99.2	101
EA010P: Conductivity by PC Titrator (QCLot: 429013	30)							
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	220 µS/cm	95.7	89.9	110
				<1	2100 µS/cm	98.7	90.2	111
				<1	58301 µS/cm	104	93.3	106
EA015: Total Dissolved Solids dried at 180 \pm 5 °C (Q	CLot: 4289590)							
A015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	102	87.0	109
_				<10	293 mg/L	104	75.2	126
				<10	2460 mg/L	98.1	83.0	124
EA015: Total Dissolved Solids dried at 180 \pm 5 °C (Q	CLot: 4290212)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	98.6	87.0	109
				<10	293 mg/L	96.2	75.2	126
				<10	2460 mg/L	102	83.0	124
EA025: Total Suspended Solids dried at 104 \pm 2°C (C	QCLot: 4289591)							
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	102	83.0	129
				<5	1000 mg/L	102	82.0	110
				<5	835 mg/L	98.7	83.0	118
EA025: Total Suspended Solids dried at 104 \pm 2°C (C	QCLot: 4290213)							
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	101	83.0	129
· · · ·				<5	1000 mg/L	98.0	82.0	110
				<5	835 mg/L	100	83.0	118
ED037P: Alkalinity by PC Titrator (QCLot: 4290135)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	102	81.0	111
					50 mg/L	106	80.0	120
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(Q	CLot: 4288808)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	104	82.0	122
ED04 IG. Suilate as SO4 - Turbidimetric				<1	500 mg/L	97.4	82.0	122

Page	: 8 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
ethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl	
0041G: Sulfate (Turbidimetric) as SO4 2- by DA(Q	CLot: 4288813) - conti	nued							
0041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	105	82.0	122	
				<1	500 mg/L	100.0	82.0	122	
0045G: Chloride by Discrete Analyser (QCLot: 428	88809)								
0045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	94.6	80.9	127	
				<1	1000 mg/L	98.2	80.9	127	
0045G: Chloride by Discrete Analyser (QCLot: 428	38814)								
0045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	94.3	80.9	127	
			_	<1	1000 mg/L	98.5	80.9	127	
0093F: Dissolved Major Cations (QCLot: 4290907)									
0093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	95.1	80.0	114	
0093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	101	90.0	116	
0093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	99.6	82.0	120	
0093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	94.7	85.0	11:	
G020F: Dissolved Metals by ICP-MS(QCLot: 42909	909)								
G020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	89.6	81.0	113	
G020B-F: Uranium	7440-61-1	0.001	mg/L	< 0.001	0.1 mg/L	91.0	85.0	115	
G020F: Dissolved Metals by ICP-MS (QCLot: 42909			5						
6020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	87.2	80.0	116	
G020A-F: Antiminian	7440-36-0	0.001	mg/L	<0.001	0.02 mg/L	88.2	70.0	130	
G020A-F: Antimony	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.5	85.0	114	
G020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	95.8	85.0	115	
G020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	91.9	82.0	110	
G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	92.5	84.0	110	
G020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	88.7	85.0	111	
G020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	91.3	82.0	112	
G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	91.5	81.0	11	
6020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	87.0	83.0	11	
G020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	87.8	82.0	110	
G020A-F: Molybdenum	7439-98-7	0.001	mg/L	< 0.001	0.1 mg/L	95.1	79.0	113	
G020A-F: Nickel	7440-02-0	0.001	mg/L	< 0.001	0.1 mg/L	90.0	82.0	112	
G020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	88.3	85.0	11	
G020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	88.4	83.0	109	
6020A-F: Zinc	7440-66-6	0.005	mg/L	< 0.005	0.1 mg/L	94.4	81.0	11	
G020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	100	85.0	115	
6020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	85.2	82.0	112	
G020A-F: Bromine	7726-95-6	0.1	mg/L	<0.1					
								1	
		0.0001	ma/l	<0.0001	0.01 mg/l	97.0	83.0	10	
G035F: Dissolved Mercury by FIMS (QCLot: 42909 G035F: Mercury	0 6) 7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	87.8	83.0		

Page	: 9 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER		Method Blank (MB)			Laboratory Control Spike (LC	S) Report	eport	
			Report	Spike	Spike Recovery (%)	Acceptabl	e Limits (%)	
Method: Compound CAS Number	r LOR	Unit	Result	Concentration	LCS	Low	High	
EG052G: Silica by Discrete Analyser (QCLot: 4288811)								
EG052G: Reactive Silica	0.05	mg/L	<0.05	5 mg/L	105	92.0	118	
			<0.05	0.5 mg/L	104	80.0	120	
EK026SF: Total CN by Segmented Flow Analyser (QCLot: 4287057)								
EK026SF: Total Cyanide 57-12-5	0.004	mg/L	<0.004	0.2 mg/L	118	73.0	133	
EK040P: Fluoride by PC Titrator (QCLot: 4290134)								
EK040P: Fluoride 16984-48-8	0.1	mg/L	<0.1	5 mg/L	104	82.0	116	
EK055G: Ammonia as N by Discrete Analyser (QCLot: 4291346)								
EK055G: Ammonia as N 7664-41-7	0.01	mg/L	<0.01	1 mg/L	104	90.0	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 4288807)								
EK057G: Nitrite as N 14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	99.4	82.0	114	
		ing/2		o.o mg/L	00.1	02.0		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot:	0.01	mg/L	<0.01	0.5 mg/L	103	91.0	113	
EK059G: Nitrite + Nitrate as N		iiig/L	<0.01	0.5 mg/L	105	91.0	113	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4291350			10.01	4.40	100	74.0	100	
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01 <0.01	4.42 mg/L	100	71.3	126	
			<0.01	0.442 mg/L 1 mg/L	106 98.3	71.3 71.3	126 126	
			\$0.01	r ing/L	90.5	71.5	120	
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 4288	1		10.01	0.5 ma/l	00.0	05.0	447	
EK071G: Reactive Phosphorus as P 14265-44-2		mg/L	<0.01	0.5 mg/L	98.3	85.0	117	
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 4288								
EK071G: Reactive Phosphorus as P 14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	94.6	85.0	117	
EP005: Total Organic Carbon (TOC) (QCLot: 4286980)								
EP005: Total Organic Carbon	1	mg/L	<1	10 mg/L	91.4	72.0	120	
EP033: C1 - C4 Hydrocarbon Gases (QCLot: 4288661)								
EP033: Methane 74-82-8	10	µg/L	<10	28.48 µg/L	100	86.0	114	
EP033: Ethene 74-85-1	10	µg/L	<10	50.29 µg/L	100	87.0	111	
EP033: Ethane 74-84-0	10	µg/L	<10	54.43 µg/L	100	87.0	111	
EP033: Propene 115-07-1	10	µg/L	<10	73.97 µg/L	101	85.0	113	
EP033: Propane 74-98-6	10	µg/L	<10	78.28 µg/L	101	84.0	112	
EP033: Butene 25167-67-3	10	µg/L	<10	99.61 µg/L	104	83.0	115	
EP033: Butane 106-97-8	10	µg/L	<10	102.18 µg/L	105	85.0	115	
EP075(SIM)A: Phenolic Compounds (QCLot: 4287663)								
EP075(SIM): Phenol 108-95-2	1	μg/L	<1.0	5 µg/L	48.1	24.5	61.9	
EP075(SIM): 2-Chlorophenol 95-57-8	1	µg/L	<1.0	5 µg/L	78.6	52.0	90.0	
EP075(SIM): 2-Methylphenol 95-48-7	1	μg/L	<1.0	5 µg/L	77.9	51.0	91.0	
EP075(SIM): 3- & 4-Methylphenol 1319-77-3	2	μg/L	<2.0	10 µg/L	66.6	44.0	88.0	
EP075(SIM): 2-Nitrophenol 88-75-5	1	μg/L	<1.0	5 μg/L	70.0	48.0	100	
EP075(SIM): 2.4-Dimethylphenol 105-67-9	1	µg/L	<1.0	5 µg/L	76.8	49.0	99.0	

Page	: 10 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)A: Phenolic Compounds (QCLot: 42	287663) - continued								
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	µg/L	<1.0	5 µg/L	70.2	53.0	105	
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	µg/L	<1.0	5 µg/L	90.1	57.0	105	
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	µg/L	<1.0	5 µg/L	81.2	53.0	99.0	
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	µg/L	<1.0	5 µg/L	70.6	50.0	106	
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	µg/L	<1.0	5 µg/L	69.6	51.0	105	
EP075(SIM): Pentachlorophenol	87-86-5	2	µg/L	<2.0	10 µg/L	31.5	10.0	95.0	
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	ons (QCLot: 4287663)								
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	76.7	50.0	94.0	
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	91.9	63.6	114	
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	88.5	62.2	113	
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	85.8	63.9	115	
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 µg/L	69.9	62.6	116	
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	69.6	64.3	116	
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	67.6	63.6	118	
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	67.2	63.1	118	
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	68.4	64.1	117	
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	68.5	62.5	116	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	µg/L	<1.0	5 µg/L	86.9	61.7	119	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	76.8	63.0	115	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 µg/L	70.2	63.3	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	71.4	59.9	118	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 µg/L	71.5	61.2	117	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	71.1	59.1	118	
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 4287664)							1	
EP071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	69.0	55.8	112	
EP071: C15 - C28 Fraction		100	μg/L	<100	600 µg/L	96.7	71.6	113	
EP071: C29 - C36 Fraction		50	μg/L	<50	400 µg/L	76.0	56.0	121	
EP080/071: Total Petroleum Hydrocarbons(QC	(Lot: 4291434)								
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	98.6	75.0	127	
EP080/071: Total Recoverable Hydrocarbons - I	NEPM 2013 Fractions (QCLo	t: 4287664)						1	
EP071: >C10 - C16 Fraction		100	µg/L	<100	500 μg/L	82.4	57.9	119	
EP071: >C16 - C34 Fraction		100	µg/L	<100	700 µg/L	75.6	62.5	110	
EP071: >C34 - C40 Fraction		100	µg/L	<100	300 µg/L	77.0	61.5	121	
EP080/071: Total Recoverable Hydrocarbons - I	NEPM 2013 Fractions (QCLo	t: 4291434)							
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	101	75.0	127	
EP080: BTEXN (QCLot: 4291434)									
EP080: Benzene	71-43-2	1	μg/L	<1	10 µg/L	100	70.0	122	

Page	: 11 of 13
Work Order	ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080: BTEXN (QCLot: 4291434) - continued									
EP080: Toluene	108-88-3	2	μg/L	<2	10 µg/L	99.6	69.0	123	
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	105	70.0	120	
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 µg/L	102	69.0	121	
	106-42-3								
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 µg/L	106	72.0	122	
EP080: Naphthalene	91-20-3	5	µg/L	<5	10 µg/L	102	70.0	120	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Furbidimetric) as SO4 2- by DA (QCLot: 4288808)						
ES2212989-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	# Not Determined	70.0	130
ED041G: Sulfate (Furbidimetric) as SO4 2- by DA (QCLot: 4288813)						
ES2213055-003	NR	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	128	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 4288809)						
ES2212989-001	Anonymous	ED045G: Chloride	16887-00-6	50 mg/L	# Not Determined	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 4288814)						
ES2213055-003	NR	ED045G: Chloride	16887-00-6	50 mg/L	107	70.0	130
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 4290910)						
ES2212790-006	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	85.6	70.0	130
		EG020A-F: Beryllium	7440-41-7	1 mg/L	99.0	70.0	130
		EG020A-F: Barium	7440-39-3	1 mg/L	90.7	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	92.9	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	81.3	70.0	130
		EG020A-F: Cobalt	7440-48-4	1 mg/L	94.6	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	93.0	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	81.0	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	93.2	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	90.7	70.0	130
		EG020A-F: Vanadium	7440-62-2	1 mg/L	79.1	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	91.9	70.0	130

Page	: 12 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

b-Matrix: WATER					Matrix Spike (MS) Report Spike SpikeRecovery(%) Acceptable Limits (%)				
	sample ID Sample ID CAS Number				SpikeRecovery(%)	Acceptable	Limits (%)		
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
G035F: Dissolve	d Mercury by FIMS (QCLot: 4290906)								
ES2212172-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	81.4	70.0	130		
EG052G: Silica by	Discrete Analyser (QCLot: 4288811)								
ES2213017-006	Anonymous	EG052G: Reactive Silica		5 mg/L	105	70.0	130		
EK026SF: Total C	N by Segmented Flow Analyser (QCLot: 4287057)								
ES2212836-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	116	70.0	130		
EK040P: Fluoride	by PC Titrator (QCLot: 4290134)						1		
ES2213052-008	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	103	70.0	130		
	a as N by Discrete Analyser (QCLot: 4291346)			0g.2					
ES2213055-001	MPMB01	EK055G: Ammonia as N	7664-41-7	1 mg/L	100	70.0	130		
		ER055G. Animonia as N	1004 41 1	T fing/E	100	70.0	100		
ES2212989-001	s N by Discrete Analyser (QCLot: 4288807)		14797-65-0	0.5 mg/l	102	70.0	130		
	Anonymous	EK057G: Nitrite as N	14797-05-0	0.5 mg/L	103	70.0	130		
· · · · · · · · · · · · · · · · · · ·	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4								
ES2213055-001	MPMB01	EK059G: Nitrite + Nitrate as N		0.5 mg/L	102	70.0	130		
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 4291350)								
ES2212953-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	# Not	70.0	130		
					Determined				
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 42888	10)							
ES2212989-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	97.0	70.0	130		
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 42888	12)							
ES2213055-003	NR	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	99.7	70.0	130		
EP005: Total Orga	nic Carbon (TOC) (QCLot: 4286980)								
ES2212951-006	Anonymous	EP005: Total Organic Carbon		100 mg/L	116	70.0	130		
EP033: C1 - C4 Hy	vdrocarbon Gases (QCLot: 4288661)								
EM2206629-001	Anonymous	EP033: Methane	74-82-8	28.48 µg/L	105	70.0	130		
		EP033: Ethene	74-85-1	50.29 µg/L	99.0	70.0	130		
		EP033: Ethane	74-84-0	54.43 µg/L	99.5	70.0	130		
		EP033: Propene	115-07-1	73.97 µg/L	99.5	70.0	130		
		EP033: Propane	74-98-6	78.28 µg/L	99.8	70.0	130		
		EP033: Butene	25167-67-3	99.61 µg/L	102	70.0	130		
		EP033: Butane	106-97-8	102.18 µg/L	103	70.0	130		
	Petroleum Hydrocarbons (QCLot: 4291434)								
ES2212853-001	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	95.7	70.0	130		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (Q	CLot: 4291434)							
ES2212853-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 µg/L	94.4	70.0	130		

Page	: 13 of 13
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

ub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (Q	CLot: 4291434)						
ES2212853-001	Anonymous	EP080: Benzene	71-43-2	25 µg/L	103	70.0	130
		EP080: Toluene	108-88-3	25 µg/L	101	70.0	130
		EP080: Ethylbenzene	100-41-4	25 µg/L	102	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	102	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 µg/L	104	70.0	130
		EP080: Naphthalene	91-20-3	25 µg/L	94.3	70.0	130

	QA/QC Compliance As	sessment to assist witl	h Quality Review
Work Order	: ES2213055	Page	: 1 of 12
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: Claire Corthier	Telephone	: +61 2 8784 8555
Project	: AGL CAMDEM GAS PROJECT J210490	Date Samples Received	: 13-Apr-2022
Site	:	Issue Date	: 22-Apr-2022
Sampler	: Claire Corthier	No. of samples received	: 6
Order number	:	No. of samples analysed	: 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	ES2212989001	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
ED045G: Chloride by Discrete Analyser	ES2212989001	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK067G: Total Phosphorus as P by Discrete Analyser	ES2212953001	Anonymous	Total Phosphorus as P		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method		E	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
MPMB01,	MPMB02,				16-Apr-2022	13-Apr-2022	3
NR,	QA1						

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	ount	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	4	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	12	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	4	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	0	4	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	12	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Page	: 3 of 12
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER					Evaluation	:: × = Holding time	e breach ; ✓ = Withi	in holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				16-Apr-2022	13-Apr-2022	×
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				16-Apr-2022	11-May-2022	~
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H) MPMB01		13-Apr-2022				15-Apr-2022	20-Apr-2022	~
Clear Plastic Bottle - Natural (EA015H) MPMB02, QA1	NR,	13-Apr-2022				16-Apr-2022	20-Apr-2022	~
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H) MPMB01		13-Apr-2022				15-Apr-2022	20-Apr-2022	1
Clear Plastic Bottle - Natural (EA025H) MPMB02, QA1	NR,	13-Apr-2022				16-Apr-2022	20-Apr-2022	~
ED009: Anions								
Clear Plastic Bottle - Natural (ED009-X) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				19-Apr-2022	11-May-2022	~
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				16-Apr-2022	27-Apr-2022	~
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				14-Apr-2022	11-May-2022	~
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				14-Apr-2022	11-May-2022	~
ED093F: Dissolved Major Cations							1	
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) MPMB01,	МРМВ02,	13-Apr-2022				19-Apr-2022	11-May-2022	1
NR,	QA1							

Page	: 4 of 12
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				19-Apr-2022	10-Oct-2022	~
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				20-Apr-2022	11-May-2022	~
EG052G: Silica by Discrete Analyser								
Clear Plastic Bottle - Natural (EG052G) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				14-Apr-2022	11-May-2022	~
EK026SF: Total CN by Segmented Flow Analyser								
Opaque plastic bottle - NaOH (EK026SF) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				14-Apr-2022	27-Apr-2022	~
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural (EK040P) MPMB01, NR.	MPMB02, QA1	13-Apr-2022				16-Apr-2022	11-May-2022	~
EK055G: Ammonia as N by Discrete Analyser								
Amber TOC Vial - Sulfuric Acid (EK055G) QA1		13-Apr-2022				19-Apr-2022	11-May-2022	~
Clear Plastic Bottle - Sulfuric Acid (EK055G) MPMB01, NR	MPMB02,	13-Apr-2022				19-Apr-2022	11-May-2022	~
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) MPMB01, NR,	MPMB02, QA1	13-Apr-2022				14-Apr-2022	15-Apr-2022	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ar	nalyser							
Amber TOC Vial - Sulfuric Acid (EK059G) QA1		13-Apr-2022				19-Apr-2022	11-May-2022	~
Clear Plastic Bottle - Sulfuric Acid (EK059G) MPMB01, NR	MPMB02,	13-Apr-2022				19-Apr-2022	11-May-2022	~
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) MPMB01,	MPMB02,	13-Apr-2022	19-Apr-2022	11-May-2022	1	19-Apr-2022	11-May-2022	~
NR,	QA1							

Page	: 5 of 12
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

EK071G: Reactive Phosphorus as P by discrete analyser Clear Plastic Bottle - Natural (EK071G) MP/MB01, NR, CA1 MP/MB02, CA1 13-Apr-2022 14-Apr-2022 15-Apr-202 EP005: Total Crain Carbon (TOC) Amber TOC Vial - Suffuric Acid (EP005) MP/MB01, Amber YOC Vial - Suffuric Acid (EP005) QA1 MP/MB02, III-May-2022 14-Apr-2022 11-May-2021 Amber YOC Vial - Suffuric Acid (EP005) QA1 13-Apr-2022 14-Apr-2022 11-May-2022 EP035: C1 - C4 Hydrocarbon Cases 14-Apr-2022 11-May-2022 NR 14-Apr-2022 11-May-2022 Amber YOC Vial - Suffuric Acid (EP033) MP/MB01, MP/MB02, 13-Apr-2022 14-Apr-2022 27-Apr-2 NR, QA1 14-Apr-2022 27-Apr-2 29-Apr-2022 29-Apr-2022 29-Apr-2022 29-Apr-2022 29-Apr-2022 29-Apr-2022 29-	; ✓ = Within holding time	breach ; ✓ = With	: × = Holding time	Evaluation					Matrix: WATER
EKO71G: Reactive Phosphorus as P by discrete analyser Image: Char Phosphorus as P by discrete analyser Crear Plastic Bottle - Natural (EK0716) MPMB01, NR, MPMB02, QA1 13.Apr-2022 14.Apr-2022 15-Apr-2022 EP095 Total Organic Carbon (TOC) MPMB01, NR MPMB02, MPMB02, NR 13.Apr-2022 14.Apr-2022 11-May-1 Amber VOC Vial - Sulturic Acid (EP005) QA1 13.Apr-2022 14.Apr-2022 11-May-1 MPMB01, NR, QA1 13.Apr-2022 14.Apr-2022 11-May-1 EP035 Total Organic Carbon Gases 14.Apr-2022 11-May-1 Amber VOC Vial - Sulturic Acid (EP03) MPMB01, NR, MPMB02, QA1 13.Apr-2022 14.Apr-2022 27.Apr-2 EP075(SIMJA: Phenolic Compounds 14.Apr-2022 29.Apr-2022 20.Apr-2022 2 Apr-2022 29.May-1 NR, QA1 13.Apr-2022 19.Apr-2022 20.Apr-2022 29.May-1 MPMB01, MPMB02, MAH	ysis	Analysis			ktraction / Preparation	Ex	Sample Date		Method
Clear Plastic Bottle - Natural (EK071G) MPMB01, MPMB02, 13.Apr-2022 14.Apr-2022 15.Apr-2022 Amber TOC Vial - Sulfuric Acid (EP005) MPMB01, MPMB02, 13.Apr-2022 14.Apr-2022 11.May-/ Amber TOC Vial - Sulfuric Acid (EP005) 14.Apr-2022 11.May-/ 11.May-/ QA1 13.Apr-2022 14.Apr-2022 11.May-/ Amber TOC Vial - Sulfuric Acid (EP005) 14.Apr-2022 11.May-/ QA1 13.Apr-2022 14.Apr-2022 11.May-/ PO33. C1 C4 Hydrocarbon Gases 14.Apr-2022 27.Apr-202 Amber OC Vial - Sulfuric Acid (EP033) MPMB02, 13.Apr-2022 19.Apr-2022 20.Apr-2022 27.Apr-2022 Amber Giass Bottie - Unpreserved (EP075[SIM)) MPMB02, 13.Apr-2022 19.Apr-2022 20.Apr-2022 20.Apr-2022 29.May-/ NR, QA1 EP075(SIM)B Polynuclear Aromatic Hydrocarbons 20.Apr-2022 20.Apr-2022 29.May-/-	or analysis Evaluation	Due for analysis	Date analysed	Evaluation	Due for extraction	Date extracted			Container / Client Sample ID(s)
MPMB01, NR, MPMB02, QA1 13.Apr-2022 14.Apr-2022 15.Apr-2022 Amber 70C Vial - Sulfuric Acid (EP005) MPMB01, NR MPMB02, 13.Apr-2022 14.Apr-2022 11.May-2022 Amber V0C Vial - Sulfuric Acid (EP005) QA1 13.Apr-2022 14.Apr-2022 11.May-2022 Amber V0C Vial - Sulfuric Acid (EP005) QA1 13.Apr-2022 14.Apr-2022 11.May-2022 P005: Sci 1 - C4 Hydrocarbon Gases 14.Apr-2022 27.Apr-2022 MPMB01, NR, QA1 14.Apr-2022 27.Apr-2022 27.Apr-2022 27.Apr-2022 27.Apr-2022 27.Apr-2022 27.Apr-2022 27.Apr-2022 27.Apr-2022 29.May-3 NR, QA1								/ser	EK071G: Reactive Phosphorus as P by discrete an
NR. QA1 Image: Control of Contrel of									Clear Plastic Bottle - Natural (EK071G)
EP005: Total Organic Carbon (TOC) Amber TOC Vial - Sulfuric Acid (EP005) MPMB01, MPMB02, Amber YOC Vial - Sulfuric Acid (EP005) OA1 BMDBV01, MPMB02, MPMB01, MPMB02, MPMB01, MPMB02, MPMB01, MPMB02, NR, QA1 EP033: C1 - C4 Hydrocarbon Gases MPMB01, MPMB02, NR, QA1 EP075(SIM): MPMB02, NR, QA1 EP080071: Total Petroleum Hydrocarbons Amber VOC	pr-2022 🖌	15-Apr-2022	14-Apr-2022				13-Apr-2022	MPMB02,	MPMB01,
Amber TOC Vial - Sulfuric Acid (EP005) MPMB01, NR MPMB02, MPMB02, MPMB02, MPMB02, CA1 13-Apr-2022 14-Apr-2022 11-May: MPMB02, MPMB02, MPMB02, MPMB02, CA1 13-Apr-2022 14-Apr-2022 11-May: MPMB02, MPMB02, MPMB02, MPMB02, CA1 13-Apr-2022 14-Apr-2022 11-May: MPMB01, MPMB02, MPMB02, CA1 13-Apr-2022 14-Apr-2022 11-May: MPMB01, MPMB02, MPMB02, CA1 13-Apr-2022 14-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 29-Apr-2022 29-Ap								QA1	NR,
MPMB01, NR MPMB02, Amber VOC Vial - Sulfuric Acid (EP085) OA1 Image: Constraint of the constraint									EP005: Total Organic Carbon (TOC)
NR Amber VOC Vial - Sulfuric Acid (EP005) QA1 13-Apr-2022 14-Apr-2022 11-May-2022 EP033: C1 - C4 Hydrocarbon Gases Amber VOC Vial - Sulfuric Acid (EP033) MPMB02, MPMB01, NR, MPMB02, QA1 13-Apr-2022 14-Apr-2022 27-Apr-2022 EP075(SIM)A: Phenolic Compounds 14-Apr-2022 27-Apr-2022 20-Apr-2022 20-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2022									Amber TOC Vial - Sulfuric Acid (EP005)
Amber VOC Vial - Sulfuric Acid (EP005) QA1 13-Apr-2022 14-Apr-2022 11-May-2 EP033: C1 - C4 Hydrocarbon Gases 14-Apr-2022 27-Apr-2 MPMB01, NR, QA1 14-Apr-2022 27-Apr-2 PO75(SIM)A: Phenolic Compounds 14-Apr-2022 27-Apr-2 Amber VOC Vial - Sulfuric Acid (EP075(SIM)) MPMB01, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 2 20-Apr-2022 29-May-3 R QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-3 29-May-3 MPMB01, NR, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-3 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-3 MPM601, NR, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-3 Mobr Glass Bottle - Unpreserved (EP075(SIM)) NR, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-3 Amber CVC Vial - Sulfuric Acid (EP080) Trip blank MPMB02, QA1 13-Apr-2022 19-Apr-2022 <td< td=""><td>ay-2022 🖌 🖌</td><td>11-May-2022</td><td>14-Apr-2022</td><td></td><td></td><td></td><td>13-Apr-2022</td><td>MPMB02,</td><td>MPMB01,</td></td<>	ay-2022 🖌 🖌	11-May-2022	14-Apr-2022				13-Apr-2022	MPMB02,	MPMB01,
QA1 13.Apr-2022 14.Apr-2022 11-May-: EP031: C1 - C4 Hydrocarbon Gases 14.Apr-2022 11-May-: Amber VOC Vial - Sulfuric Acid (EP03) MPMB02, QA1 13.Apr-2022 14.Apr-2022 27-Apr-2 NR, QA1 14.Apr-2022 27-Apr-2 Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB02, QA1 13.Apr-2022 19-Apr-2022 20-Apr-2022 ✓ 20-Apr-2022 29-May-: EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 20-Apr-2022 29-May-: R QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 ✓ 20-Apr-2022 29-May-: IP075(SIM)B: Polynuclear Aromatic Hydrocarbons 20-Apr-2022 29-May-: NR, QA1 MPMB01, MPMB02, 20-Apr-2022 29-May-: NR, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-: NR, QA1 20-Apr-2022									NR
EP033: C1 - C4 Hydrocarbon Gases Amber VOC Vial - Sulfuric Acid (EP033) MPMB02, 13-Apr-2022 14-Apr-2022 27-Apr-2 NR, QA1 13-Apr-2022 14-Apr-2022 27-Apr-2 EP075(SIM)A: Phenolic Compounds Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB02, 13-Apr-2022 19-Apr-2022 20-Apr-2022 2 29-May-2 NR, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 2 29-May-2 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB02, 13-Apr-2022 19-Apr-2022 20-Apr-2022 2 9-May-2 NR, QA1 13-Apr-2022 19-Apr-2022 2 20-Apr-2022 2 9-May-2 NR, QA1 13-Apr-2022 19-Apr-2022 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Amber VOC Vial - Sulfuric Acid (EP005)</td>									Amber VOC Vial - Sulfuric Acid (EP005)
Amber VOC Vial - Sulfuric Acid (EP033) MPMB02, QA1 MPMB02, QA1 MPMB02, QA1 MPMB02, MPMB01, MPMB01, NR, MPMB02, QA1 MPMB02,	ay-2022 🖌 🖌	11-May-2022	14-Apr-2022				13-Apr-2022		QA1
MPMB01, NR, MPMB02, QA1 MPMB02, Amber Glass Bottle - Unpreserved (EP075(SIMI)) MPMB02, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2 EP075(SIM)A: Phenolic Compounds MPMB02, QA1 MPMB01, MPMB01, MPMB01, NR, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons MPMB02, NR, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-2 MPMB01, NR, MPMB02, QA1 MPMB02, NR, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-2 MPMB01, NR, MPMB02, QA1 MPMB02, QA1 11-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-2 Amber Glass Bottle - Unpreserved (EP071) MPMB02, NR, MPMB02, QA1 11-Apr-2022 19-Apr-2022 20-Apr-2022 29-May-2 Amber VOC Vial - Sulfuric Acid (EP080) MPMB02, NR, MPMB02, QA1 11-Apr-2022 19-Apr-2022 25-Apr-2022 ✓ 19-Apr-2022 25-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022 27-Apr-2022									EP033: C1 - C4 Hydrocarbon Gases
NR. QA1 Image: Constraint of									Amber VOC Vial - Sulfuric Acid (EP033)
EP075(SIM)A: Phenolic Compounds Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB02, QA1 13-Apr-2022 20-Apr-2022 ✓ 20-Apr-2022 29-May: NR, QA1 13-Apr-2022 20-Apr-2022 ✓ 20-Apr-2022 29-May: EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB02, MPMB01, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 ✓ 20-Apr-2022 29-May: RR, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May: 29-May: NR, QA1 MPMB01, MPMB02, MPMB01, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May: MPMB01, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 29-May: Amber VOC Vial - Sulfuric Acid (EP080) 11-Apr-2022 19-Apr-2022 20-Apr-2022 29-May: NR, QA1 11-Apr-2022 19-Apr-2022 20-Apr-2022 29-May: NR, QA1 11-Apr-2022 19-Apr-2022 20-Apr-2022 29-May: <	pr-2022 🖌	27-Apr-2022	14-Apr-2022				13-Apr-2022	MPMB02,	MPMB01,
Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2022 29-May-202								QA1	NR,
Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB02, OA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2022 29-May-202									EP075(SIM)A: Phenolic Compounds
NR, QA1 Image: Constraint of the state of the st									
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Amber Glass Bottle - Unpreserved (EP075(SIM)) MP/MB01, NR, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2 EP080/071: Total Petroleum Hydrocarbons Amber Glass Bottle - Unpreserved (EP071) MP/MB01, MP/MB01, NR, MP/MB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 ✓ 20-Apr-2022 29-May-2 Amber Glass Bottle - Unpreserved (EP071) MP/MB01, NR, MP/MB02, QA1 11-Apr-2022 19-Apr-2022 20-Apr-2022 ✓ 20-Apr-2022 29-May-2 Amber VOC Vial - Sulfuric Acid (EP080) Trip blank 11-Apr-2022 19-Apr-2022 25-Apr-2022 ✓ 19-Apr-2022 25-Apr-2022 2 20-Apr-2022 2 2 20-Apr-2022 <	ay-2022 🖌 🖌	29-May-2022	20-Apr-2022	1	20-Apr-2022	19-Apr-2022	13-Apr-2022	MPMB02,	MPMB01,
Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB01, NR, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>QA1</td><td>NR,</td></t<>								QA1	NR,
Amber Glass Bottle - Unpreserved (EP075(SIM)) MPMB01, NR, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>EP075(SIM)B: Polynuclear Aromatic Hydrocarbons</td></t<>									EP075(SIM)B: Polynuclear Aromatic Hydrocarbons
MPMB01, MPMB02, QA1 13-Apr-2022 20-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2 NR, QA1 20-Apr-2022									
EP080/071: Total Petroleum Hydrocarbons Amber Glass Bottle - Unpreserved (EP071) MPMB02, 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2 NR, QA1 11-Apr-2022 19-Apr-2022 25-Apr-2022 19-Apr-2022 25-Apr-2022 27-Apr-2022 27-Apr-2022 <td>ay-2022 🖌</td> <td>29-May-2022</td> <td>20-Apr-2022</td> <td>1</td> <td>20-Apr-2022</td> <td>19-Apr-2022</td> <td>13-Apr-2022</td> <td>MPMB02,</td> <td></td>	ay-2022 🖌	29-May-2022	20-Apr-2022	1	20-Apr-2022	19-Apr-2022	13-Apr-2022	MPMB02,	
Amber Glass Bottle - Unpreserved (EP071) MPMB02, MPMB02, 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2 NR, QA1 QA1 11-Apr-2022 19-Apr-2022 25-Apr-2022 Image: Apr-2022 25-Apr-2022 Image: Apr-2022 25-Apr-2022 Image: Apr-2022								QA1	NR,
Amber Glass Bottle - Unpreserved (EP071) MPMB02, MPMB02, 13-Apr-2022 19-Apr-2022 20-Apr-2022 20-Apr-2022 29-May-2 NR, QA1 QA1 11-Apr-2022 19-Apr-2022 25-Apr-2022 Image: Apr-2022 25-Apr-2022 Image: Apr-2022 25-Apr-2022 Image: Apr-2022									EP080/071: Total Petroleum Hydrocarbons
MPMB01, NR, MPMB02, QA1 13-Apr-2022 19-Apr-2022 20-Apr-2022									
Amber VOC Vial - Sulfuric Acid (EP080) 11-Apr-2022 19-Apr-2022 25-Apr-2022 19-Apr-2022 25-Apr-2022 25-Apr-2022 25-Apr-2022 25-Apr-2022 25-Apr-2022 25-Apr-2022 27-Apr-2022	ay-2022 🖌 🖌	29-May-2022	20-Apr-2022	1	20-Apr-2022	19-Apr-2022	13-Apr-2022	MPMB02,	
Trip blank 11-Apr-2022 19-Apr-2022 25-Apr-2022 Image: Constraint of the symbols								QA1	NR,
Trip blank 11-Apr-2022 19-Apr-2022 25-Apr-2022 Image: Constraint of the symbol Image: Consthe symbol									Amber VOC Vial - Sulfuric Acid (EP080)
MPMB01, MPMB02, 13-Apr-2022 19-Apr-2022 27-Apr-2022 19-Apr-2022 27-Apr-2022 NR, QA1 Image: Constraint of the second sec	pr-2022 🖌	25-Apr-2022	19-Apr-2022	1	25-Apr-2022	19-Apr-2022	11-Apr-2022		
NR, QA1									Amber VOC Vial - Sulfuric Acid (EP080)
	pr-2022 🖌	27-Apr-2022	19-Apr-2022	1	27-Apr-2022	19-Apr-2022	13-Apr-2022	MPMB02,	MPMB01,
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions								QA1	NR,
								2013 Fractions	EP080/071: Total Recoverable Hydrocarbons - NEF
Amber Glass Bottle - Unpreserved (EP071)									Amber Glass Bottle - Unpreserved (EP071)
MPMB01, MPMB02, 13-Apr-2022 19-Apr-2022 2 0-Apr-2022 2 0-Apr-2022 2 0-Apr-2022 2 9-May-2	ay-2022 🖌 🖌	29-May-2022	20-Apr-2022	1	20-Apr-2022	19-Apr-2022	13-Apr-2022	MPMB02,	MPMB01,
NR, QA1								QA1	NR,
Amber VOC Vial - Sulfuric Acid (EP080)									Amber VOC Vial - Sulfuric Acid (EP080)
Trip blank 11-Apr-2022 19-Apr-2022 25-Apr-2022 ✓ 19-Apr-2022 25-Apr-2022	pr-2022 🖌	25-Apr-2022	19-Apr-2022	1	25-Apr-2022	19-Apr-2022	11-Apr-2022		Trip blank
Amber VOC Vial - Sulfuric Acid (EP080)									Amber VOC Vial - Sulfuric Acid (EP080)
MPMB01, MPMB02, 13-Apr-2022 19-Apr-2022 2 7-Apr-2022 3 19-Apr-2022 3 19-Apr-2022 3 19-Apr-2022 19-Apr-202 19-Apr-2022 19-Apr-202 19-Apr-2022 19-Apr-202 19-Apr-202	pr-2022 🗸	27-Apr-2022	19-Apr-2022	 ✓ 	27-Apr-2022	19-Apr-2022	13-Apr-2022	MPMB02,	MPMB01,
NR, QA1								QA1	NR,

Page	: 6 of 12
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP	080)							
Trip blank		11-Apr-2022	19-Apr-2022	25-Apr-2022	1	19-Apr-2022	25-Apr-2022	✓
Amber VOC Vial - Sulfuric Acid (EP	•							_
MPMB01,	MPMB02,	13-Apr-2022	19-Apr-2022	27-Apr-2022	-	19-Apr-2022	27-Apr-2022	 ✓
NR,	QA1,							
Trip spike								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	3	28	10.71	10.00	~	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	6	60	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	17	11.76	10.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	20	10.00	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	14	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	10.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	4	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	4	33	12.12	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	3	23	13.04	10.00	~	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	4	34	11.76	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	12	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	20	5.00	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	4	28	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	5	60	8.33	8.33	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	: 8 of 12
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER						introl frequency i	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type	Mathead		ount		Rate (%)	Evaluation	Quality Control Specification
Analytical Methods	Method	C	Reaular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	4	33	12.12	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	4	34	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	6	40	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	6	40	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	19	15.79	15.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	28	7.14	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	60	1.67	1.67		NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	8	12.50	5.00		NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00		NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	4	25.00	5.00		NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	23	8.70	5.00		NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	1	4	25.00	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED000 X	2	34	5.88	5.00		NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	40	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	 	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	 	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	 	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EP005 EK067G	1	19	5.26	5.00	 ✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	ER067G EP071	1	19	8.33	5.00	 	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP071 EP080	1	20	5.00	5.00	 	NEPM 2013 B3 & ALS QC Standard
	EP080	1	20	5.00	5.00	v	

Page	: 9 of 12
Work Order	: ES2213055
Client	: EMM CONSULTING PTY LTD
Project	: AGL CAMDEM GAS PROJECT J210490

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Ammonia as N by Discrete analyser	EK055G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	4	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	23	8.70	5.00	1	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	0	4	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	12	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Standard Anions -by IC (Extended Method)	ED009-X	WATER	In house: Referenced to APHA 4110B. This method is compliant with NEPM Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Silica (Reactive) by Discrete Analyser	EG052G	WATER	In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM Schedule B(3).
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
C1 - C4 Gases	EP033	WATER	Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity.
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

CERTIFICATE OF ANALYSIS

Work Order	ES2213939	Page	: 1 of 8
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: Claire Corthier	Contact	: Sepan Mahamad
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61 2 8784 8555
Project	:	Date Samples Received	: 22-Apr-2022 15:00
Order number	:	Date Analysis Commenced	23-Apr-2022
C-O-C number	:	Issue Date	02-May-2022 16:32
Sampler	: ALEX BAYER/CLAIRE CORTHIER		NATA
Site	:		
Quote number	: SY/416/16 - AGL Camden Planned Event		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EK040: Poor spike recovery for Fluoride, however insufficent sample amount remaining for confirmation analysis.
- EP080: Positive result for ES2213939-02 is confirmed by re-analysis.
- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- TDS by method EA-015 may bias high for sample 1 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB03	MPMB04	 	
		Samplii	ng date / time	22-Apr-2022 11:30	22-Apr-2022 10:30	 	
Compound	CAS Number	LOR	Unit	ES2213939-001	ES2213939-002	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.35	9.10	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	196	216	 	
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	140	137	 	
EA025: Total Suspended Solids dried	l at 104 + 2°C						1
Suspended Solids (SS)		5	mg/L	74	40	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	19	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	89	67	 	
Total Alkalinity as CaCO3		1	mg/L	89	86	 	
ED041G: Sulfate (Turbidimetric) as S							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	2	 	
		·	mg/E	-1			
ED045G: Chloride by Discrete Analys Chloride	16887-00-6	1	mg/L	22	29	 	
	16887-00-6	1	mg/L	22	23	 	
ED093F: Dissolved Major Cations	7440 70 0	1	mg/l	44	•		1
Calcium	7440-70-2	1	mg/L	<u> </u>	3	 	
Magnesium	7439-95-4	1	mg/L			 	
Sodium	7440-23-5	1	mg/L	15	39	 	
Potassium	7440-09-7	1	mg/L	5	6	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.23	0.25	 	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	 	
Arsenic	7440-38-2	0.001	mg/L	0.004	<0.001	 	
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	 	
Barium	7440-39-3	0.001	mg/L	0.179	0.295	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Cobalt	7440-48-4	0.001	mg/L	0.005	<0.001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.987	0.009	 	
Nickel	7440-02-0	0.001	mg/L	0.003	<0.001	 	

Page : 4 of 8 Work Order : ES2213939 Client : EMM CONSULTING PTY LTD Project : ---

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB03	MPMB04	 	
		Sampli	ng date / time	22-Apr-2022 11:30	22-Apr-2022 10:30	 	
Compound	CAS Number	LOR	Unit	ES2213939-001	ES2213939-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS	S - Continued						
Lead	7439-92-1	0.001	mg/L	<0.001	0.003	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.008	0.687	 	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	 	
Strontium	7440-24-6	0.001	mg/L	0.104	0.072	 	
Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	 	
Iron	7439-89-6	0.05	mg/L	3.20	0.19	 	
Bromine	7726-95-6	0.1	mg/L	<0.1	<0.1	 	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EG052G: Silica by Discrete Analyser							
Reactive Silica		0.05	mg/L	4.29	1.92	 	
EK026SF: Total CN by Segmented F	low Analyser						
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	<0.1	0.1	 	
EK055G: Ammonia as N by Discrete			J. J				1
Ammonia as N	7664-41-7	0.01	mg/L	0.41	0.33	 	
EK057G: Nitrite as N by Discrete Ana			3				
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
		0.01	g. =				
EK058G: Nitrate as N by Discrete An Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	 	
			ing/E	-0.01	-0.01		
EK059G: Nitrite plus Nitrate as N (NO Nitrite + Nitrate as N			mg/l	<0.01	<0.01		
		0.01	mg/L	<0.01	<0.01	 	
EK067G: Total Phosphorus as P by D		0.61					
Total Phosphorus as P		0.01	mg/L	0.11	0.05	 	
EK071G: Reactive Phosphorus as P							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	<0.01	 	
EN055: Ionic Balance							
Ø Total Anions		0.01	meq/L	2.40	2.58	 	
Ø Total Cations		0.01	meq/L	2.30	2.16	 	
EP005: Total Organic Carbon (TOC)							

Page : 5 of 8 Work Order : ES2213939 Client : EMM CONSULTING PTY LTD Project : ---

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB03	MPMB04	 	
		Sampli	ng date / time	22-Apr-2022 11:30	22-Apr-2022 10:30	 	
Compound	CAS Number	LOR	Unit	ES2213939-001	ES2213939-002	 	
				Result	Result	 	
EP005: Total Organic Carbon (T	OC) - Continued						
Total Organic Carbon		1	mg/L	10	7	 	
EP033: C1 - C4 Hydrocarbon Ga	ses						
Methane	74-82-8	10	µg/L	11000	12100	 	
Ethene	74-85-1	10	μg/L	<10	<10	 	
Ethane	74-84-0	10	μg/L	<10	<10	 	
Propene	115-07-1	10	μg/L	<10	<10	 	
Propane	74-98-6	10	μg/L	<10	<10	 	
Butene	25167-67-3	10	µg/L	<10	<10	 	
Butane	106-97-8	10	μg/L	<10	<10	 	
EP075(SIM)A: Phenolic Compou	inds						
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	 	
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0	 	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	 	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	 	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	μg/L	<1.0	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	μg/L	<1.0	<1.0	 	
4-Chloro-3-methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0	 	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L	<1.0	<1.0	 	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	<2.0	 	
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons						
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	 	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0	 	

Page : 6 of 8 Work Order : ES2213939 Client : EMM CONSULTING PTY LTD Project : ---

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MPMB03	MPMB04	 	
		Sampli	ng date / time	22-Apr-2022 11:30	22-Apr-2022 10:30	 	
Compound	CAS Number	LOR	Unit	ES2213939-001	ES2213939-002	 	
				Result	Result	 	
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued					
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	 	
EP080/071: Total Petroleum Hydrocarbo	ons						
C6 - C9 Fraction		20	μg/L	<20	<20	 	
C10 - C14 Fraction		50	µg/L	<50	<50	 	
C15 - C28 Fraction		100	µg/L	<100	<100	 	
C29 - C36 Fraction		50	µg/L	<50	<50	 	
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	 	
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	าร				
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	 	
(F1)							
>C10 - C16 Fraction		100	µg/L	<100	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	<100	 	
>C34 - C40 Fraction		100	µg/L	<100	<100	 	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	 	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	 	
Toluene	108-88-3	2	µg/L	<2	3	 	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	 	
	108-38-3 106-42-3	2	µg/L	<2	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	 	
^ Total Xylenes		2	µg/L	<2	<2	 	
^ Sum of BTEX		1	µg/L	<1	3	 	
Naphthalene	91-20-3	5	µg/L	<5	<5	 	
ED009: Anions							
Bromide	24959-67-9	0.010	mg/L	0.049	0.049	 	

Sub-Matrix: WATER			Sample ID	MPMB03	MPMB04	 	
(Matrix: WATER)							
		Sampli	ng date / time	22-Apr-2022 11:30	22-Apr-2022 10:30	 	
Compound	CAS Number	LOR	Unit	ES2213939-001	ES2213939-002	 	
				Result	Result	 	
EP075(SIM)S: Phenolic Compound Su	ırrogates						
Phenol-d6	13127-88-3	1.0	%	26.0	26.0	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	65.0	31.4	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	64.2	21.9	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	1.0	%	72.5	62.0	 	
Anthracene-d10	1719-06-8	1.0	%	88.1	76.5	 	
4-Terphenyl-d14	1718-51-0	1.0	%	88.0	77.3	 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	93.6	100	 	
Toluene-D8	2037-26-5	2	%	119	130	 	
4-Bromofluorobenzene	460-00-4	2	%	112	121	 	

ALS

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	/ Limits (%)	
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Surrogate	s			
Phenol-d6	13127-88-3	10	44	
2-Chlorophenol-D4	93951-73-6	14	94	
2.4.6-Tribromophenol	118-79-6	17	125	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	20	104	
Anthracene-d10	1719-06-8	27	113	
4-Terphenyl-d14	1718-51-0	32	112	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	71	137	
Toluene-D8	2037-26-5	79	131	
4-Bromofluorobenzene	460-00-4	70	128	

QUALITY CONTROL REPORT

Work Order	: ES2213939	Page	: 1 of 11	
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney	
Contact	: Claire Corthier	Contact	: Sepan Mahamad	
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	4
Telephone	:	Telephone	: +61 2 8784 8555	
Project	:	Date Samples Received	: 22-Apr-2022	
Order number	:	Date Analysis Commenced	: 23-Apr-2022	
C-O-C number	:	Issue Date	: 02-May-2022	NATA
Sampler	: ALEX BAYER/CLAIRE CORTHIER		Hac-MRA	NATA
Site	:			
Quote number	: SY/416/16 - AGL Camden Planned Event		and the second s	creditation No. 825
No. of samples received	: 2			r compliance with
No. of samples analysed	: 2		ISO/IE	C 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED009: Anions (QC	: Lot: 4310633)								
EP2204723-001	Anonymous	ED009-X: Bromide	24959-67-9	0.01	mg/L	<0.010	<0.010	0.0	No Limit
WN2204566-001	Anonymous	ED009-X: Bromide	24959-67-9	0.01	mg/L	0.162	0.159	1.9	0% - 50%
EA005P: pH by PC T	itrator (QC Lot: 430	2994)							
ES2213914-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.81	7.91	1.3	0% - 20%
ES2213912-006	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.68	6.68	0.0	0% - 20%
EA010P: Conductivi	ty by PC Titrator (Q	C Lot: 4302991)							
ES2214047-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	115	118	2.8	0% - 20%
ES2214017-004	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	122	117	4.0	0% - 20%
ES2213895-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	432	439	1.7	0% - 20%
ES2213912-006	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	96	98	1.3	0% - 20%
ES2213920-004	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	209	207	0.9	0% - 20%
ES2213679-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	19100	19400	1.7	0% - 20%
EA015: Total Dissolv	ved Solids dried at 1	80 ± 5 °C (QC Lot: 4310290)							
ES2213815-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	36600	36700	0.4	0% - 20%
ES2214062-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	105	118	11.8	0% - 50%
EA025: Total Susper	nded Solids dried at	104 ± 2°C (QC Lot: 4310291)							
ES2213815-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.0	No Limit
ES2214062-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	261	256	2.0	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lo	ot: 4302996)							
ES2213920-004	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	86	87	1.9	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	86	87	1.9	0% - 20%

Page : 3 of 11 Work Order : ES2213939 Client : EMM CONSULTING PTY LTD Project : ---

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
ED037P: Alkalinity b	y PC Titrator (QC Lot	: 4302996) - continued							
ES2214004-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	139	138	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	139	138	0.0	0% - 20%
D041G: Sulfate (Tu	rbidimetric) as SO4 2-	by DA (QC Lot: 4301241)							
ES2213995-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	9	9	0.0	No Limit
ES2213939-001	MPMB03	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<1	0.0	No Limit
D045G: Chloride b	y Discrete Analyser (0	QC Lot: 4301240)							
- ES2213939-001	MPMB03	ED045G: Chloride	16887-00-6	1	mg/L	22	22	0.0	0% - 20%
D193E: Dissolved	Major Cations (QC Lo				U				
ES2213912-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	6	5	0.0	No Limit
-02213312-001	Anonymous	ED093F: Calcium ED093F: Magnesium	7439-95-4	1	mg/L	4	4	0.0	No Limit
		ED093F: Magnesium ED093F: Sodium	7440-23-5	1	mg/L	17	17	0.0	0% - 50%
		ED093F: Solidin ED093F: Potassium	7440-09-7	1	mg/L	2	2	0.0	No Limit
ES2213939-001	MPMB03	ED093F: Calcium	7440-70-2	1	mg/L	14	14	0.0	0% - 50%
02210000 001		ED093F: Magnesium	7439-95-4	1	mg/L	10	10	0.0	0% - 50%
		ED093F: Magnesium ED093F: Sodium	7440-23-5	1	mg/L	15	15	0.0	0% - 50%
		ED093F: Potassium	7440-09-7	1	mg/L	5	5	0.0	No Limit
	Metals by ICP-MS (QC		1110 00 1		iiig/2	0	0	0.0	
EG020F: Dissolved P ES2213939-001	MPMB03		7440 42 0	0.0001	ma/l	<0.0001	<0.0001	0.0	No Limit
22213939-001	WPWB03	EG020A-F: Cadmium	7440-43-9		mg/L			0.0	No Limit
		EG020A-F: Antimony	7440-36-0 7440-38-2	0.001	mg/L	<0.001	<0.001 0.004	0.0	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.004	<0.004	0.0	No Limit No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	0.179	0.178	0.0	0% - 20%
		EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.005	0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L mg/L	<0.005	<0.004	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.987	0.994	0.0	0% - 20%
		EG020A-F: Manganese	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Molybdenum EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Nickel EG020A-F: Zinc	7440-62-0	0.005	mg/L	0.008	0.008	0.0	No Limit
		EG020A-F: ZINC EG020A-F: Aluminium	7429-90-5	0.000	mg/L	0.23	0.22	0.0	0% - 20%
		EG020A-F: Aluminium EG020A-F: Selenium	7429-90-3	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Variadium EG020A-F: Boron	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Boron EG020A-F: Iron	7439-89-6	0.05	mg/L	3.20	3.22	0.5	0% - 20%
		EGUZUA-F. IIUII	7439-89-0	0.03	mg/L	<0.1	<0.1	0.0	No Limit

Page	: 4 of 11
Work Order	: ES2213939
Client	: EMM CONSULTING PTY LTD
Project	:

Sub-Matrix: WATER]	Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EG020F: Dissolved	Metals by ICP-MS	(QC Lot: 4307607) - continued									
ES2213939-001	MPMB03	EG020B-F: Strontium	7440-24-6	0.001	mg/L	0.104	0.105	0.0	0% - 20%		
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
EG035F: Dissolved	Mercury by FIMS (QC Lot: 4307605)									
ES2213912-006	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
ES2213939-001	MPMB03	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
EG052G: Silica by D) iscrete Analyser (QC Lot: 4301242)									
ES2213939-001	MPMB03	EG052G: Reactive Silica		0.05	mg/L	4.29	4.46	3.8	0% - 20%		
EK026SF: Total CN	by Segmented Flo	w Analyser (QC Lot: 4302039)									
ES2213629-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	< 0.004	<0.004	0.0	No Limit		
ES2213629-011	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit		
EK040P: Fluoride by											
ES2213914-002	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit		
ES2213920-004	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit		
EK055G: Ammonia	as N by Discrete A	nalyser (QC Lot: 4306932)			5						
ES2213939-001	MPMB03	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.41	0.39	4.3	0% - 20%		
ES2214163-005	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.10	0.10	0.0	0% - 50%		
		vser (QC Lot: 4301238)									
ES2213995-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<2.00	<2.00	0.0	No Limit		
ES2213939-001	MPMB03	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		() by Discrete Analyser (QC Lot: 4306933)		0.01			0101	0.0			
ES2214078-003	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.01	0.0	No Limit		
ES2213939-001	MPMB03	EK059G: Nitrite + Nitrate as N		0.01	mg/L	< 0.01	<0.01	0.0	No Limit		
		screte Analyser (QC Lot: 4306935)		0.01			0101	0.0			
ES2213969-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.53	0.52	0.0	0% - 20%		
ES2213909-001	Anonymous	EK067G: Total Phosphorus as P EK067G: Total Phosphorus as P		0.01	mg/L	0.01	0.02	0.0	No Limit		
	-	/ discrete analyser (QC Lot: 4301239)		0.01	ilig/E	0.01	0.01	0.0			
ES2213939-001	MPMB03		14265-44-2	0.01	mg/L	0.01	0.01	0.0	No Limit		
		EK071G: Reactive Phosphorus as P	14203-44-2	0.01	ilig/L	0.01	0.01	0.0			
EP005: Total Organi				4		2	2	0.0	No. Lineit		
ES2213879-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	2 4	2	0.0	No Limit		
ES2213895-004	Anonymous	EP005: Total Organic Carbon		I	mg/L	4	4	0.0	No Limit		
EP033: C1 - C4 Hydr											
ES2213687-008	Anonymous	EP033: Methane	74-82-8	10	µg/L	365	353	3.4	0% - 20%		
		EP033: Ethene	74-85-1 74-84-0	10	µg/L	<10 <10	<10 <10	0.0	No Limit		
		EP033: Ethane	115-07-1	10 10	µg/L	-	<10		No Limit		
		EP033: Propene	74-98-6	10	µg/L	<10	<10	0.0	No Limit No Limit		
		EP033: Propane	25167-67-3	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Butene	106-97-8	10	μg/L μg/L	<10	<10	0.0	No Limit		
		EP033: Butane	100-97-8	10	µg/L	NIU	NI 0	0.0			

Page	5 of 11
Work Order	: ES2213939
Client	: EMM CONSULTING PTY LTD
Project	:

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EP033: C1 - C4 Hyd	rocarbon Gases (QC	Lot: 4305918) - continued									
ES2213831-001	Anonymous	EP033: Methane	74-82-8	10	µg/L	3250	3240	0.6	0% - 20%		
		EP033: Ethene	74-85-1	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Ethane	74-84-0	10	µg/L	<10	<10	0.0	No Limit		
	EP033: Propene	115-07-1	10	µg/L	<10	<10	0.0	No Limit			
		EP033: Propane	74-98-6	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Butene	25167-67-3	10	µg/L	<10	<10	0.0	No Limit		
		EP033: Butane	106-97-8	10	µg/L	<10	<10	0.0	No Limit		
EP080/071: Total Pe	troleum Hydrocarbo	ns (QC Lot: 4304127)									
ES2213692-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit		
ES2213797-004	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	270	260	0.0	0% - 50%		
EP080/071: Total Re	coverable Hydrocarl	oons - NEPM 2013 Fractions (QC Lot: 4304127)									
ES2213692-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit		
ES2213797-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	260	260	0.0	0% - 50%		
EP080: BTEXN (QC	Lot: 4304127)										
ES2213692-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit		
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit		
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit		
ES2213797-004	Anonymous	EP080: Benzene	71-43-2	1	µg/L	111	110	0.0	0% - 20%		
		EP080: Toluene	108-88-3	2	µg/L	26	26	0.0	0% - 50%		
		EP080: Ethylbenzene	100-41-4	2	µg/L	5	5	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	35	36	2.8	0% - 50%		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	2	µg/L	16	17	0.0	No Limit		
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit		

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	ELimits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED009: Anions (QCLot: 4310633)									
ED009-X: Bromide	24959-67-9	0.01	mg/L	<0.010	2 mg/L	99.4	93.0	109	
EA005P: pH by PC Titrator (QCLot: 4302994)									
EA005-P: pH Value			pH Unit		4 pH Unit	99.5	98.8	101	
					7 pH Unit	99.8	99.2	101	
EA010P: Conductivity by PC Titrator (QCLot: 430)	2991)								
A010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	220 µS/cm	90.7	89.9	110	
				<1	2100 µS/cm	96.0	90.2	111	
				<1	58301 µS/cm	96.0	93.3	106	
EA015: Total Dissolved Solids dried at 180 ± 5 °C	(QCLot: 4310290)								
A015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	95.2	87.0	109	
			, č	<10	293 mg/L	125	75.2	126	
				<10	2460 mg/L	98.7	83.0	124	
A025: Total Suspended Solids dried at 104 ± 2°C	(QCLot: 4310291)								
A025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	105	83.0	129	
				<5	1000 mg/L	95.1	82.0	11(
				<5	835 mg/L	97.5	83.0	118	
D037P: Alkalinity by PC Titrator (QCLot: 430299	6)								
D037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	96.2	81.0	111	
					50 mg/L	115	80.0	120	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	(QCLot: 4301241)								
D041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	104	82.0	122	
				<1	500 mg/L	104	82.0	122	
ED045G: Chloride by Discrete Analyser (QCLot: 4	301240)								
D045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	95.2	80.9	127	
				<1	1000 mg/L	92.4	80.9	127	
D093F: Dissolved Major Cations (QCLot: 430760	3)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	103	80.0	114	
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	100	90.0	116	
D093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	96.9	82.0	120	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	96.1	85.0	11:	
EG020F: Dissolved Metals by ICP-MS (QCLot: 430	7606)								
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	89.1	80.0	116	
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	0.02 mg/L	93.9	70.0	130	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.4	85.0	114	

Page	: 7 of 11
Work Order	: ES2213939
Client	: EMM CONSULTING PTY LTD
Project	:

ub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
G020F: Dissolved Metals by ICP-MS (QCLot: 43076	606) - continued								
G020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	93.3	85.0	115	
G020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	93.6	82.0	110	
G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	91.7	84.0	110	
G020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	91.3	85.0	111	
G020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	89.7	82.0	112	
G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	89.6	81.0	111	
G020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	91.1	83.0	111	
G020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	89.6	82.0	110	
G020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	94.7	79.0	113	
G020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	90.2	82.0	112	
G020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	94.0	85.0	115	
G020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	91.5	83.0	109	
G020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	92.1	81.0	117	
G020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	92.3	85.0	115	
G020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	91.0	82.0	112	
G020A-F: Bromine	7726-95-6	0.1	mg/L	<0.1					
EG020F: Dissolved Metals by ICP-MS (QCLot: 43076	607)								
G020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	92.2	81.0	113	
G020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001	0.1 mg/L	91.5	85.0	115	
G035F: Dissolved Mercury by FIMS (QCLot: 43076	05)								
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	96.6	83.0	105	
G052G: Silica by Discrete Analyser (QCLot: 430124	42)								
G052G: Reactive Silica		0.05	mg/L	<0.05	5 mg/L	108	92.0	118	
				<0.05	0.5 mg/L	106	80.0	120	
EK026SF: Total CN by Segmented Flow Analyser (C	CLot: 4302039)								
K026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	111	73.0	133	
K040P: Fluoride by PC Titrator (QCLot: 4302995)			_		_			I	
K040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	94.8	82.0	116	
EK055G: Ammonia as N by Discrete Analyser(QCL0	4206022)		5		- 5				
K055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	102	90.0	114	
		0.01	1119/E	-0.01	i iiig/E	102	00.0	. 14	
K057G: Nitrite as N by Discrete Analyser (QCLot: -	4301238) 14797-65-0	0.01	ma/l	<0.01	0.5 mg/l	103	82.0	114	
K057G: Nitrite as N			mg/L	SU.UT	0.5 mg/L	103	0Z.U	114	
K059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 430							113	
K059G: Nitrite + Nitrate as N		0.01	mg/L	< 0.01	0.5 mg/L	99.7	91.0		

Page	: 8 of 11
Work Order	: ES2213939
Client	: EMM CONSULTING PTY LTD
Project	:

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report		Spike Recovery (%)	Acceptable	e Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EK067G: Total Phosphorus as P by Discrete Analyser	(QCLot: 4306935) - c	ontinued								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	94.8	71.3	126		
				<0.01	0.442 mg/L	103	71.3	126		
				<0.01	1 mg/L	118	71.3	126		
EK071G: Reactive Phosphorus as P by discrete analy	ser (QCLot: 4301239)									
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	100	85.0	117		
EP005: Total Organic Carbon (TOC) (QCLot: 4302946)										
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	91.9	72.0	120		
EP033: C1 - C4 Hydrocarbon Gases (QCLot: 4305918)										
EP033: Methane	74-82-8	10	μg/L	<10	28.48 µg/L	105	86.0	114		
EP033: Ethene	74-85-1	10	μg/L	<10	50.29 μg/L	101	87.0	111		
EP033: Ethane	74-84-0	10	μg/L	<10	54.43 µg/L	103	87.0	111		
EP033: Propene	115-07-1	10	μg/L	<10	73.97 µg/L	103	85.0	113		
EP033: Propane	74-98-6	10	μg/L	<10	78.28 µg/L	103	84.0	112		
EP033: Butene	25167-67-3	10	μg/L	<10	99.61 µg/L	112	83.0	115		
EP033: Butane	106-97-8	10	μg/L	<10	102.18 µg/L	112	85.0	115		
EP075(SIM)A: Phenolic Compounds (QCLot: 4302848)									
EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 μg/L	35.9	24.5	61.9		
EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 μg/L	71.8	52.0	90.0		
EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<1.0	5 µg/L	74.7	51.0	91.0		
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<2.0	10 µg/L	60.1	44.0	88.0		
EP075(SIM): 2-Nitrophenol	88-75-5	1	μg/L	<1.0	5 µg/L	74.7	48.0	100		
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<1.0	5 µg/L	72.9	49.0	99.0		
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	<1.0	5 μg/L	67.8	53.0	105		
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 μg/L	66.4	57.0	105		
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<1.0	5 µg/L	81.9	53.0	99.0		
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<1.0	5 µg/L	85.5	50.0	106		
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 μg/L	91.8	51.0	105		
EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 µg/L	38.5	10.0	95.0		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (C	CL of: 4302848)							1		
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 µg/L	67.7	50.0	94.0		
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 µg/L	85.9	63.6	114		
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 µg/L	87.6	62.2	113		
P075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 µg/L	92.9	63.9	115		
P075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	99.4	62.6	116		
P075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 μg/L	98.8	64.3	116		
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	95.9	63.6	118		
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 µg/L	93.9	63.1	118		
EP075(SIM): Pyrene EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 µg/L	94.9	64.1	117		

Page	: 9 of 11
Work Order	: ES2213939
Client	: EMM CONSULTING PTY LTD
Project	:

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 4302848) - cor	ntinued							
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 µg/L	88.0	62.5	116	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	µg/L	<1.0	5 µg/L	97.1	61.7	119	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	83.4	63.0	115	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	90.5	63.3	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	93.3	59.9	118	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	91.0	61.2	117	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	91.4	59.1	118	
EP080/071: Total Petroleum Hydrocarbons (QCLot:	4302849)								
EP071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	69.0	55.8	112	
EP071: C15 - C28 Fraction		100	μg/L	<100	600 µg/L	77.1	71.6	113	
EP071: C29 - C36 Fraction		50	μg/L	<50	400 µg/L	102	56.0	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot:	4304127)								
EP080: C6 - C9 Fraction		20	μg/L	<20	260 µg/L	89.8	75.0	127	
EP080/071: Total Recoverable Hydrocarbons - NEPM	1 2013 Fractions (QCLo	ot: 4302849)							
EP071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	79.3	57.9	119	
EP071: >C16 - C34 Fraction		100	µg/L	<100	700 μg/L	90.7	62.5	110	
EP071: >C34 - C40 Fraction		100	µg/L	<100	300 µg/L	78.5	61.5	121	
EP080/071: Total Recoverable Hydrocarbons - NEPM	1 2013 Fractions (QCLo	ot: 4304127)							
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	90.9	75.0	127	
EP080: BTEXN (QCLot: 4304127)									
EP080: Benzene	71-43-2	1	μg/L	<1	10 µg/L	88.6	70.0	122	
EP080: Toluene	108-88-3	2	μg/L	<2	10 µg/L	109	69.0	123	
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	107	70.0	120	
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	10 µg/L	112	69.0	121	
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	108	72.0	122	
EP080: Naphthalene	91-20-3	5	µg/L	<5	10 µg/L	103	70.0	120	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	Jub-Matrix: WATER			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable I	_imits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 4301241)							
ES2213939-001	MPMB03	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	126	70.0	130	

Page	: 10 of 11
Work Order	ES2213939
Client	: EMM CONSULTING PTY LTD
Project	:

b-Matrix: WATER					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)			
boratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
0045G: Chloride	by Discrete Analyser (QCLot: 4301240)									
S2213939-001	MPMB03	ED045G: Chloride	16887-00-6	50 mg/L	102	70.0	130			
G020F: Dissolve	d Metals by ICP-MS (QCLot: 4307606)									
S2213939-002	MPMB04	EG020A-F: Arsenic	7440-38-2	1 mg/L	93.3	70.0	130			
		EG020A-F: Beryllium	7440-41-7	1 mg/L	107	70.0	130			
		EG020A-F: Barium	7440-39-3	1 mg/L	95.5	70.0	130			
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	95.1	70.0	130			
		EG020A-F: Chromium	7440-47-3	1 mg/L	92.3	70.0	130			
		EG020A-F: Cobalt	7440-48-4	1 mg/L	92.6	70.0	130			
		EG020A-F: Copper	7440-50-8	1 mg/L	92.9	70.0	130			
		EG020A-F: Lead	7439-92-1	1 mg/L	88.4	70.0	130			
		EG020A-F: Manganese	7439-96-5	1 mg/L	95.0	70.0	130			
		EG020A-F: Nickel	7440-02-0	1 mg/L	95.6	70.0	130			
		EG020A-F: Vanadium	7440-62-2	1 mg/L	92.7	70.0	130			
		EG020A-F: Zinc	7440-66-6	1 mg/L	96.7	70.0	130			
G035F: Dissolve	d Mercury by FIMS (QCLot: 4307605)									
S2213912-003	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	94.2	70.0	130			
G052G: Silica by	Discrete Analyser (QCLot: 4301242)									
S2213939-001	MPMB03	EG052G: Reactive Silica		5 mg/L	103	70.0	130			
K026SF: Total C	N by Segmented Flow Analyser (QCLot: 4302039)									
S2213629-001	Anonymous	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	118	70.0	130			
K040P: Fluoride	by PC Titrator (QCLot: 4302995)									
S2213914-002	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	# 49.5	70.0	130			
K055G: Ammoni	a as N by Discrete Analyser (QCLot: 4306932)									
S2213939-001	МРМВ03	EK055G: Ammonia as N	7664-41-7	1 mg/L	93.6	70.0	130			
K057G: Nitrite a	s N by Discrete Analyser (QCLot: 4301238)									
S2213939-001	МРМВ03	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	117	70.0	130			
K059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLo						1			
S2213939-001	MPMB03	EK059G: Nitrite + Nitrate as N		0.5 mg/L	95.6	70.0	130			
	osphorus as P by Discrete Analyser (QCLot: 4306			0.0	00.0					
S2213969-006	Anonymous			1 mg/L	114	70.0	130			
		EK067G: Total Phosphorus as P		Ting/L	114	70.0	150			
	Phosphorus as P by discrete analyser (QCLot: 43			0.5 "	402	70.0	105			
S2213939-001	МРМВ03	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	102	70.0	130			
	nic Carbon (TOC) (QCLot: 4302946)									
S2213879-002	Anonymous	EP005: Total Organic Carbon		100 mg/L	94.6	70.0	130			
P033 ⁻ C1 - C4 Hv	vdrocarbon Gases (QCLot: 4305918)									

Page	: 11 of 11
Work Order	: ES2213939
Client	: EMM CONSULTING PTY LTD
Project	

b-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P033: C1 - C4 Hy	drocarbon Gases (QCLot: 4305918) - contin	ued					
S2213804-006	Anonymous	EP033: Methane	74-82-8	28.48 µg/L	# Not	70.0	130
					Determined		
		EP033: Ethene	74-85-1	50.29 µg/L	103	70.0	130
		EP033: Ethane	74-84-0	54.43 µg/L	104	70.0	130
		EP033: Propene	115-07-1	73.97 µg/L	108	70.0	130
		EP033: Propane	74-98-6	78.28 µg/L	108	70.0	130
		EP033: Butene	25167-67-3	99.61 µg/L	126	70.0	130
		EP033: Butane	106-97-8	102.18 µg/L	124	70.0	130
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 4304127)						
S2213692-001	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	90.2	70.0	130
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	tions (QCLot: 4304127)					
ES2213692-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	87.8	70.0	130
P080: BTEXN (Q	CLot: 4304127)						
S2213692-001	Anonymous	EP080: Benzene	71-43-2	25 µg/L	88.1	70.0	130
		EP080: Toluene	108-88-3	25 µg/L	104	70.0	130
		EP080: Ethylbenzene	100-41-4	25 µg/L	103	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	106	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 µg/L	107	70.0	130
		EP080: Naphthalene	91-20-3	25 µg/L	98.5	70.0	130

QA/QC Compliance A	ssessment to assist with	h Quality Review	
ES2213939	Page	: 1 of 11	

Work Order	: ES2213939	Page	: 1 of 11
Client		Laboratory	: Environmental Division Sydney
Contact	: Claire Corthier	Telephone	: +61 2 8784 8555
Project	:	Date Samples Received	: 22-Apr-2022
Site	:	Issue Date	: 02-May-2022
Sampler	: ALEX BAYER/CLAIRE CORTHIER	No. of samples received	: 2
Order number	:	No. of samples analysed	: 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK040P: Fluoride by PC Titrator	ES2213914002	Anonymous	Fluoride	16984-48-8	49.5 %	70.0-130%	Recovery less than lower data quality
							objective
EP033: C1 - C4 Hydrocarbon Gases	ES2213804006	Anonymous	Methane	74-82-8	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

			-		
Extraction / Preparation			Analysis		
Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
		overdue			overdue
			26-Apr-2022	22-Apr-2022	4
	Date extracted	Date extracted Due for extraction	Date extracted Due for extraction Days overdue	Date extracted Due for extraction Days overdue Date analysed	Date extracted Due for extraction Days overdue Date analysed Due for analysis

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	C	Count	Rat	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	10	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	20	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	10	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	0	2	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	20	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time.

Matrix: WATER Evaluation: * = Holding time breach ; * = W							in holding time.
Method	Sample Date Extraction / Preparation Analysis				Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
MPMB03,	MPMB04	22-Apr-2022				26-Apr-2022	22-Apr-2022	×
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P) MPMB03,	MPMB04	22-Apr-2022				26-Apr-2022	20-May-2022	~
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H) MPMB03,	MPMB04	22-Apr-2022				28-Apr-2022	29-Apr-2022	1
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H)								
MPMB03,	MPMB04	22-Apr-2022				28-Apr-2022	29-Apr-2022	✓
ED009: Anions								
Clear Plastic Bottle - Natural (ED009-X) MPMB03,	MPMB04	22-Apr-2022				29-Apr-2022	20-May-2022	~
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) MPMB03,	MPMB04	22-Apr-2022				26-Apr-2022	06-May-2022	~
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) MPMB03,	MPMB04	22-Apr-2022				23-Apr-2022	20-May-2022	1
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) MPMB03.	MPMB04	22-Apr-2022				23-Apr-2022	20-May-2022	1
ED093F: Dissolved Major Cations		-					_	
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) MPMB03.	MPMB04	22-Apr-2022				28-Apr-2022	20-May-2022	1
		22-Api-2022				20-Api-2022	20 May 2022	v
EG020F: Dissolved Metals by ICP-MS Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)		1						
MPMB03,	MPMB04	22-Apr-2022				28-Apr-2022	19-Oct-2022	1
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)								
MPMB03,	MPMB04	22-Apr-2022				28-Apr-2022	20-May-2022	✓
EG052G: Silica by Discrete Analyser								
Clear Plastic Bottle - Natural (EG052G)							00 May 2000	
МРМВ03,	MPMB04	22-Apr-2022				23-Apr-2022	20-May-2022	✓
EK026SF: Total CN by Segmented Flow Analyser								
Opaque plastic bottle - NaOH (EK026SF) MPMB03,	MPMB04	22-Apr-2022				26-Apr-2022	06-May-2022	✓

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural (EK040P)								
MPMB03,	MPMB04	22-Apr-2022				26-Apr-2022	20-May-2022	✓
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) MPMB03,	MPMB04	22-Apr-2022				27-Apr-2022	20-May-2022	~
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)							04 4 0000	
MPMB03,	MPMB04	22-Apr-2022				23-Apr-2022	24-Apr-2022	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) MPMB03,	MPMB04	22-Apr-2022				27-Apr-2022	20-May-2022	1
		22-Api-2022				21-401-2022	20 May 2022	v
EK067G: Total Phosphorus as P by Discrete Analyse Clear Plastic Bottle - Sulfuric Acid (EK067G)	er							
MPMB03,	MPMB04	22-Apr-2022	27-Apr-2022	20-May-2022	✓	27-Apr-2022	20-May-2022	1
EK071G: Reactive Phosphorus as P by discrete anal	lyser							
Clear Plastic Bottle - Natural (EK071G)		00 4 77 0000				00 4	24 Apr 2022	,
MPMB03,	MPMB04	22-Apr-2022				23-Apr-2022	24-Apr-2022	-
EP005: Total Organic Carbon (TOC)						1		
Amber TOC Vial - Sulfuric Acid (EP005) MPMB03,	MPMB04	22-Apr-2022				26-Apr-2022	20-May-2022	1
EP033: C1 - C4 Hydrocarbon Gases Amber VOC Vial - Sulfuric Acid (EP033)								
MPMB03,	MPMB04	22-Apr-2022				27-Apr-2022	06-May-2022	1
EP075(SIM)A: Phenolic Compounds								
Amber Glass Bottle - Unpreserved (EP075(SIM))								
MPMB03,	MPMB04	22-Apr-2022	26-Apr-2022	29-Apr-2022	✓	29-Apr-2022	05-Jun-2022	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM))								
MPMB03,	MPMB04	22-Apr-2022	26-Apr-2022	29-Apr-2022	~	29-Apr-2022	05-Jun-2022	✓
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)	MEMPO4	22 Apr 2022	26 Apr 2022	29-Apr-2022	,	20 Apr 2022	05-Jun-2022	,
MPMB03, Amber VOC Viel Sulfurio Apid (ED090)	MPMB04	22-Apr-2022	26-Apr-2022	29-Api-2022	~	29-Apr-2022	05-5011-2022	
Amber VOC Vial - Sulfuric Acid (EP080) MPMB03,	MPMB04	22-Apr-2022	27-Apr-2022	06-May-2022	1	27-Apr-2022	06-May-2022	✓
EP080/071: Total Recoverable Hydrocarbons - NEPN	A 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
MPMB03,	MPMB04	22-Apr-2022	26-Apr-2022	29-Apr-2022		29-Apr-2022	05-Jun-2022	✓
Amber VOC Vial - Sulfuric Acid (EP080) MPMB03,	MPMB04	22-Apr-2022	27-Apr-2022	06-May-2022	1	27-Apr-2022	06-May-2022	
		22-Api-2022	21-Api-2022	00-11/ay-2022	v	21-Api-2022	00-ividy-2022	✓

Page	: 5 of 11
Work Order	: ES2213939
Client	: EMM CONSULTING PTY LTD
Project	:

Matrix: WATER Evaluation: * = Holding time breach ; 🗸 = Within holding						n holding time		
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid	(EP080)							
MPMB03,	MPMB04	22-Apr-2022	27-Apr-2022	06-May-2022	1	27-Apr-2022	06-May-2022	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	15	13.33	10.00	~	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	2	17	11.76	10.00	~	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	6	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	6	60	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	7	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	10	20.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	10	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	2	50.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	2	2	100.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	12	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	19	10.53	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	20	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	~	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	17	5.88	5.00	~	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	6	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	5	60	8.33	8.33	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	7	14.29	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page: 7 of 11Work Order: ES2213939Client: EMM CONSULTING PTY LTDProject: ----

Analysea Method OC Resulter Actual Exacted Penaltor Mille as N (DO) ty Discrite Analyser EK0905 1 20 5.00 . NEPA2013 B3 A.U.S CC Standard Mille as N (DO) ty Discrite Analyser EK0905 1 100 10.00 5.00 . NEPA2013 B3 A.U.S CC Standard PAH/Fencs/Intra EX0755 1 100 10.00 5.00 . NEPA2013 B3 A.U.S CC Standard Standard Analyser EKX71G 1 7 14.23 5.00 . NEPA2013 B3 A.U.S CC Standard Standard Anions JV (C Extende Method) ED004X 1 2 80.00 . NEPA2013 B3 A.U.S CC Standard Standard Anions JV (C Extende Method) ED004X 1 2 80.00 . NEPA2013 B3 A.U.S CC Standard Standard Anions JV (C Extende Analyser ECXER 2 110.00 . NEPA2013 B3 A.U.S CC Standard Standard Analyser EXXER 2 10.00 10.00 . NEPA2013 B3 A.U.S CC Standard Total Standar Standard .<	Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
International Control Processor Processor Processor Processor Nindia and National An NOD by Decome Analyser Excessor 1 0.0 5.00 5.00 V NEPFM 2013 B3 A.A.IS OC. Standard Nindia and National Analyser Excessor 2 0.0 5.00 V NEPFM 2013 B3 A.A.IS OC. Standard Pich De Traintor Excessor 2 0 10.00 K.60 V NEPFM 2013 B3 A.A.IS OC. Standard Billing Reacher Finaptionsa an P-Py Disorte Analyser Excessor 2 100.00 V NEPFM 2013 B3 A.L.S OC. Standard Silling Reacher Finaptionsa an P-Py Disorte Analyser Excessor 2 100.00 V NEPFM 2013 B3 A.L.S OC. Standard Silling Traditional Viscore Analyser Excessor 2 100.00 V NEPFM 2013 B3 A.L.S OC. Standard Silling Traditional Viscore Analyser Excessor 2 100.00 V NEPFM 2013 B3 A.L.S OC. Standard Total Comprison as P-Py Discrete Analyser Excessor 2 10 15.30 15.00 15.00 NEPFM 2013 B3 A.L.S OC. Standard To	Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Nihlle as N/NO.jo Uscrete AnalyserER00001500500NEPM 2013 83.A.I.S. OC ShandardPAIMPInte as N/D Jocete AnalyserEP075(bM)110010.005.00NEPM 2013 83.A.I.S. OC ShandardPAIMPInte as N/D Jocete AnalyserER00716110.0010.005.00NEPM 2013 83.A.I.S. OC ShandardStandard Anons -by IC Extende AnalyserER00716114.205.004.00NEPM 2013 83.A.I.S. OC ShandardStandard Anons -by IC Extende AnalyserER00716110.00010.00VNEPM 2013 83.A.I.S. OC ShandardStandard Anons -by IC Extende AnalyserER00716216.00VNEPM 2013 83.A.I.S. OC ShandardStandard Anons -by IC Extende AnalyserER00726210.0010.00VNEPM 2013 83.A.I.S. OC ShandardStandard Anons -by IC Extende AnalyserER00726210.0310.00VNEPM 2013 83.A.I.S. OC ShandardStandard Anons -by IC Extende AnalyserER007611716.00VNEPM 2013 83.A.I.S. OC ShandardTotal Organic Extende AnalyserER007611716.00VNEPM 2013 83.A.I.S. OC ShandardTotal Organic Extende AnalyserER00761176.00VNEPM 2013 83.A.I.S. OC ShandardTotal Organic Extende AnalyserER00761176.00VNEPM 2013 83.A.I.S. OC ShandardTotal Organic Extende AnalyserER00761176.00VNEPM 2013 83.A.I.S. OC Shandard	Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Ninite as Ny Discrete Analyser EKGRYG 1 100 0.000 5.00 // NEPM 2013 88. A.LS OC Standard PH VPHTronics (COK) EXADDP 2 20 10.00 // NEPM 2013 88. A.LS OC Standard Readre Phosphorus as PA VDiscrite Analyser EKADDP 2 10.00 // NEPM 2013 88. A.LS OC Standard Sinca (Readre) by Discrite Analyser EGG020 2 2 10.00 // NEPM 2013 88. A.LS OC Standard Sinda (Chardmehr) EGG020 1 2 10.00 // NEPM 2013 88. A.LS OC Standard Sindar (Chardmehr) EGG020 1 2 16.00 // NEPM 2013 88. A.LS OC Standard Sindar (Chardmehr) EG0205 2 16.00 15.00 // NEPM 2013 88. A.LS OC Standard Taid Opanic Chardmehr EG0205 2 16.00 15.00 // NEPM 2013 88. A.LS OC Standard Taid Opanic Chardmehr EG0205 1 17 5.00 // NEPM 2013 88. A.LS OC Standard Taid Opanic Chardmehr EG0205 1	Laboratory Control Samples (LCS) - Continued							
PA-IMPendenci (CCM-S-SM) EPOT SIGMA 1 <	Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pi by C Trainin E A005P 2 20 10.00 · NEPK 2013 B3 A LS OC Slandard Sinica Reactive Programs an PS-b Discrete Analyser ECOSD / 2 2 100.00 FOR 2013 B3 A LS OC Slandard Sinica Reactive Programs an PS-b Discrete Analyser ECOSD / 2 2 100.00 FOR 2013 B3 A LS OC Slandard Sinica Reactive Programs an PS-b Discrete Analyser EDOATO / 2 12 16.00 - NEPK 2013 B3 A LS OC Slandard Sinica Richard Nice Method EDOATO / 2 19 10.30 10.00 - NEPK 2013 B3 A LS OC Slandard Sinica Richard Nice Method EDOATO / 2 19 10.30 10.00 - NEPK 2013 B3 A LS OC Slandard Total Disport Catabase EDOATO / 2 19 10.30 10.00 - NEPK 2013 B3 A LS OC Slandard Total Disport Catabase EDOATO / 2.0 15.00 1.00 - NEPK 2013 B3 A LS OC Slandard Total Disport Catabase EDOATO / 2.0 1.00 5.00 - NEPK 2013 B3 A LS OC Slandard	Nitrite as N by Discrete Analyser	EK057G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Proceptions as P-By Discrete Analyser EXX/T 1 7 14.29 6.00 ✓ NEPM 2018 B3 A LS OC Stundard Standard Anions by IC (Extended Method) ED0405 1 2 50.00 ✓ NEPM 2018 B3 A LS OC Stundard Standard Anions by IC (Extended Method) ED0416 2 16.00 ✓ NEPM 2018 B3 A LS OC Stundard Standard Anions by IC (Extended Method) ED0416 2 16.00 ✓ NEPM 2018 B3 A LS OC Stundard Standard Anions by IC (Extended Method) EA025H 3 20 16.00 ✓ NEPM 2018 B3 A LS OC Stundard Total Condition Stander S	PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Situa (Racive) by Discrete Analyser ECOSEG 2 2 10.00 V NEPM 2018 B3 & LS GC Standard Standard Anons - by (C) (Existing de Method) ED0405 1 2 50.00 5.00 V NEPM 2018 B3 & LS GC Standard Standard Anons - by (C) (Existing de Method) EA029H 3 20 16.67 10.00 V NEPM 2018 B3 & ALS GC Standard Standard Scilits (High Level) EA029H 3 20 16.00 V NEPM 2018 B3 & ALS GC Standard Total Opanic Carbon ER0285F 2 19 10.33 10.00 V NEPM 2018 B3 & ALS GC Standard Total Opanic Carbon ER005 1 7 5.88 5.00 V NEPM 2018 B3 & ALS GC Standard Total Opanic Carbon ER007 1 20 5.00 5.00 V NEPM 2018 B3 & ALS GC Standard Tell - Semootidite Fracton ER071 1 20 5.00 5.00 V NEPM 2018 B3 & ALS GC Standard Tell - Semootidite Fracton ER071 1 20 5.00 V <	pH by PC Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sindard Anons -by (C. (Stender Method) ED009x 1 2 8.00 5.00 · NEPM 2013 B.8.A.LS OC Standard Suspended Suids (High Level) EA029H 3 20 15.00 · NEPM 2013 B.8.A.LS OC Standard Total Cyonide by Segmented Flow Analyser ER029SF 2 18 15.00 · NEPM 2013 B.8.A.LS OC Standard Total Cyonide by Segmented Flow Analyser ER029SF 2 18 15.00 · NEPM 2013 B.8.A.LS OC Standard Total Cognine Carbon ER0476 3 20 15.00 · NEPM 2013 B.8.A.LS OC Standard Total Cognine Carbon ER0476 3 20 15.00 · NEPM 2013 B.8.A.LS OC Standard TRH - Semivolatile Fraction EP071 1 20 5.00 · NEPM 2013 B.8.A.LS OC Standard TRH - Semivolatile Fraction EP071 1 20 5.00 · NEPM 2013 B.8.A.LS OC Standard TRH - Semivolatile Fraction EP0703 1 17 5.80 · NEPM 2013 B.8.A.LS OC Standard Chorde by Discrete Analyser </td <td>Reactive Phosphorus as P-By Discrete Analyser</td> <td>EK071G</td> <td>1</td> <td>7</td> <td>14.29</td> <td>5.00</td> <td>✓</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfale (Turbolimetric) as SO4 2- by Discrete Analyser ED0.41 2 12 16 10.00 ✓ NEPM 2013 38 ALS OC Standard Total Cynarde by Segmented Flow Analyser EK02384 2 19 15.00 15.00 ✓ NEPM 2013 83 ALS OC Standard Total Disolved Solids (HipL Level) EK02384 2 19 15.00 5.00 ✓ NEPM 2013 83 ALS OC Standard Total Organic Carbon EF070 3 20 15.00 5.00 ✓ NEPM 2013 83 ALS OC Standard Total Photophotics as P by Discrete Analyser EK0676 3 20 5.00 5.00 ✓ NEPM 2013 83 ALS OC Standard THH Volaitas B K Dy Discrete Analyser EF070 1 20 5.00 5.00 ✓ NEPM 2013 83 ALS OC Standard THH Volaitas B K Dy Discrete Analyser EK0555 1 15 5.00 ✓ NEPM 2013 83 ALS OC Standard Chorde Dy Discrete Analyser EK0556 1 15 5.00 ✓ NEPM 2013 83 ALS OC Standard Chorde Dy Discrete Analyser EK0506 1 16	Silica (Reactive) by Discrete Analyser	EG052G	2	2	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfale (Turbolimetric) as SO4 2- by Discrete Analyser ED0.41 2 12 16 10.00 ✓ NEPM 2013 38 ALS OC Standard Total Cynarde by Segmented Flow Analyser EK02384 2 19 15.00 15.00 ✓ NEPM 2013 83 ALS OC Standard Total Disolved Solids (HipL Level) EK02384 2 19 15.00 5.00 ✓ NEPM 2013 83 ALS OC Standard Total Organic Carbon EF070 3 20 15.00 5.00 ✓ NEPM 2013 83 ALS OC Standard Total Photophotics as P by Discrete Analyser EK0676 3 20 5.00 5.00 ✓ NEPM 2013 83 ALS OC Standard THH Volaitas B K Dy Discrete Analyser EF070 1 20 5.00 5.00 ✓ NEPM 2013 83 ALS OC Standard THH Volaitas B K Dy Discrete Analyser EK0555 1 15 5.00 ✓ NEPM 2013 83 ALS OC Standard Chorde Dy Discrete Analyser EK0556 1 15 5.00 ✓ NEPM 2013 83 ALS OC Standard Chorde Dy Discrete Analyser EK0506 1 16	Standard Anions -by IC (Extended Method)	ED009-X	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Cynide by Segmented How Analyser EK2029F 2 19 10.63 10.00 V NEPM 2018 B3 & ALS OC Standard Total Disolocid Solids (High Level) EA015H 3 20 15.00 15.00 V NEPM 2018 B3 & ALS OC Standard Total Disolocid Carbon EP006 1 17 5.88 5.00 V NEPM 2018 B3 & ALS OC Standard Total Disolocid Carbon EP007 3 20 15.00 S.00 V NEPM 2018 B3 & ALS OC Standard THH Volatilex/BTEX EP008 1 20 5.00 S.00 V NEPM 2018 B3 & ALS OC Standard Method Elanos (MB) Method Elanos (MB) V NEPM 2018 B3 & ALS OC Standard Conductivity Discrete Analyser EC0565 1 15 6.67 S.00 V NEPM 2018 B3 & ALS OC Standard Conductivity by PD Circite analyser EC0565 1 17 5.88 S.00 V NEPM 2018 B3 & ALS OC Standard Disolved Metrus by FDWS EC03267 1 7 14.29 S.00 V NEPM 2018 B3 & ALS OC Standard	Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	12	16.67	10.00		NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Lavel) EAn FM 3 20 15.00 15.00 V NEPM 2013 B3 & ALS QC Standard Total Organic Carbon EP005 1 17 5.88 5.00 V NEPM 2013 B3 & ALS QC Standard Total Drugshrubus as P By Discrete Analyser EP007 1 20 5.00 5.00 V NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 1 20 5.00 5.00 V NEPM 2013 B3 & ALS QC Standard Method Elserks (MB) Ammonia as Nb Discrete analyser EK0560 1 15 6.67 5.00 V NEPM 2013 B3 & ALS QC Standard Chordcubrity by PD Tartor ED0466 1 6 16.67 5.00 V NEPM 2013 B3 & ALS QC Standard Disolved Metals by ICP-M3 - Suite A E00465 1 7 14.29 5.00 V NEPM 2013 B3 & ALS QC Standard Disolved Metals by ICP-M3 - Suite A E00355 1 20 5.00 V NEPM 2013 B3 & ALS QC Standard Disolved Metals by ICP-M3 - Suite A E00305F	Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon EP005 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Total Phosphorus as P By Discrete Analyser EK067G 3 20 15.00 15.00 V NEPM 2013 B3 & ALS OC Standard TRH Voidiles/BTEX EP000 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Mathed Blanks (MB) EP003 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard C1 - GL Gases EP033 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Conductivity by PC Titrator ED045G 1 6 16.67 6.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Mercury by FIMS EG0326F 1 20 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Mercury by FIMS EG0326F 1 20 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Mercury by FIMS EG0326F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC St	Total Cyanide by Segmented Flow Analyser	EK026SF	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Prosphorus as P By Discrete Analyser EKOGTO 3 20 15.00 15.00 ✓ NEPM 2013 B3 & ALS OC Standard TRH - Semivolatile Fraction EPO01 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard TRH Volatiles/TEX EPO06 1 20 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Method Starke (NB) Amonoia 83 Ny Discrete Analyser EK0856 1 15 6.67 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Chi-C4 Gases EPO33 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Chi-C4 Gases EPO35 1 160 1.67 1.67 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metals by ICP-MS - Suite A EG0267 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metals by ICP-MS - Suite A EG020AF 1 2 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metals by ICP-MS - Suite B EG020AF 1	Total Dissolved Solids (High Level)	EA015H	3	20	15.00	15.00	~	NEPM 2013 B3 & ALS QC Standard
Total Prosphorus as P By Discrete Analyser EKOGTO 3 20 15.00 15.00 ✓ NEPM 2013 B3 & ALS OC Standard TRH - Semivolatile Fraction EPO01 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard TRH Volatiles/TEX EPO06 1 20 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Method Starke (NB) Amonoia 83 Ny Discrete Analyser EK0856 1 15 6.67 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Chi-C4 Gases EPO33 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Chi-C4 Gases EPO35 1 160 1.67 1.67 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metals by ICP-MS - Suite A EG0267 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metals by ICP-MS - Suite A EG020AF 1 2 5.00 5.00 ✓ NEPM 2013 B3 & ALS OC Standard Disolved Metals by ICP-MS - Suite B EG020AF 1	Total Organic Carbon	EP005	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX EP080 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Method Elisints (MB) Ammonia as N by Discrete analyser EKX055G 1 15 6.67 5.00 ✓ NEPM 2013 B3 & ALS QC Standard C1 - C4 Gases ED045G 1 6 16.77 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Choinde by Discrete Analyser ED045G 1 6 1.67 1.67 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metricury by FINIS EG0325F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG0208-F 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite B EG0208-F 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Mitrite an Nitrate as N (NOx) by Discrete Analyser EKX057G 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite as N by Discrete Analyser EKX057G	Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	~	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB) EK0055G 1 15 6.67 5.00 ✓ NEPM 2013 B3 & ALS QC Standard C 1- C 4 Gases EP033 1 17 5.88 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Chloride by Discrete Analyser ED045G 1 6 16.67 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Conductivity by PC Tirator EA010-P 1 60 1.67 1.47 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metrup by FIMS EG0208-F 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG0208-F 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG0208-F 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG0208-F 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite as N (NOx) by Discrete Analyser EK050G 1 20 5.00	TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser EKR056 1 15 6.67 5.00 ✓ NEPM 2013 B3 & ALS QC Standard C1 - C4 Gases ED0436 107 5.88 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Conductely Discrete Analyser ED0466 1 67 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Conductivity by PC Titrator EE0037 1 600 1.07 1.67 NEPM 2013 B3 & ALS QC Standard Dissolved Metrals by ICP-MS - Suite A EG020AF 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard Dissolved Metrals by ICP-MS - Suite A EG020AF 1 20 5.00 S.00 V NEPM 2013 B3 & ALS QC Standard Dissolved Metrals by ICP-MS - Suite A EG020BF 1 2 5.00 S.00 V NEPM 2013 B3 & ALS QC Standard Nitrite an N Inbicrete Analyser EG020BF 1 20 S.00 V NEPM 2013 B3 & ALS QC Standard Nitrite an N Inbicrete Analyser EK0576 1 1 10.00 S.00 V NEPM 2013 B3	TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser EKR056 1 15 6.67 5.00 ✓ NEPM 2013 B3 & ALS QC Standard C1 - C4 Gases ED0436 107 5.88 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Conductely Discrete Analyser ED0466 1 67 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Conductivity by PC Titrator EE0037 1 600 1.07 1.67 NEPM 2013 B3 & ALS QC Standard Dissolved Metrals by ICP-MS - Suite A EG020AF 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard Dissolved Metrals by ICP-MS - Suite A EG020AF 1 20 5.00 S.00 V NEPM 2013 B3 & ALS QC Standard Dissolved Metrals by ICP-MS - Suite A EG020BF 1 2 5.00 S.00 V NEPM 2013 B3 & ALS QC Standard Nitrite an N Inbicrete Analyser EG020BF 1 20 S.00 V NEPM 2013 B3 & ALS QC Standard Nitrite an N Inbicrete Analyser EK0576 1 1 10.00 S.00 V NEPM 2013 B3	Method Blanks (MB)							
Chloride by Discrete Analyser ED0456 1 6 16.67 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Conductivity by PC Titrator EA010-P 1 60 1.67 1.67 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Meraus by ICP-MS - Suite A EG020A,F 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020A,F 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite B EG020A,F 1 2 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Migr Cations - Dissolved EE0029B,F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Migr Cations - Dissolved ED09351 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite an Ni/Discrete Analyser EK0570 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Reactive Phosphorus as P-By Discrete Analyser EK0570 1	Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete AnalyserED045G1616.675.00✓NEPM 2013 B3 & ALS QC StandardConductivity by PC TitratorEA010-P1601.671.67VNEPM 2013 B3 & ALS QC StandardDissolved Metals by ICP-MS - Suite AEG020AF1714.295.00✓NEPM 2013 B3 & ALS QC StandardDissolved Metals by ICP-MS - Suite BEG020AF125.005.00✓NEPM 2013 B3 & ALS QC StandardDissolved Metals by ICP-MS - Suite BEG020AF125.005.00✓NEPM 2013 B3 & ALS QC StandardMigr Cations - DissolvedEG020AF1205.005.00✓NEPM 2013 B3 & ALS QC StandardMigr Cations - DissolvedEE0093F1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite as N (NOx) by Discrete AnalyserEK056G1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite as N by Discrete AnalyserEK057G11010.005.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052C125.005.00✓NEPM 2013 B3 & ALS QC StandardSultate (Turbidimetric) as SQ4 2- by Discrete AnalyserEG052G125.005.00✓NEPM 2013 B3 & ALS QC StandardSultate (Turbidimetric) as SQ4 2- by Discrete Analyser <td>C1 - C4 Gases</td> <td>EP033</td> <td>1</td> <td>17</td> <td>5.88</td> <td>5.00</td> <td>1</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	C1 - C4 Gases	EP033	1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS EG035F 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020A-F 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020B-F 1 2 50.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Dissolved Metals by ICP-MS - Suite A EG020B-F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Major Cations - Dissolved EK040P 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Mitrie as N (NOx) by Discrete Analyser EK059G 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard PAH/Phenols (GC/MS - SIM) EK075G 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Standard Aniosper EK071G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Standard Anions - by IC (Extended Method) EG052G 1 2	Chloride by Discrete Analyser	ED045G	1	6	16.67	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite AEG020AF1714.295.00✓NEPM 2013 B3 & ALS QC StandardDissolved Metals by ICP-MS - Suite BEG020EF1250.005.00✓NEPM 2013 B3 & ALS QC StandardFluoride by PC TitratorEK040P1205.005.00✓NEPM 2013 B3 & ALS QC StandardMajor Catitors - DissolvedED093F1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite and Nitrate as N (NOx) by Discrete AnalyserEK057G11010.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite as N by Discrete AnalyserEK057G11010.005.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK057G11010.005.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEK057G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1250.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED047G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED047G1128.335.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEM047G1205.005.00✓NEPM 2013 B3 & ALS QC StandardTot	Conductivity by PC Titrator	EA010-P	1	60	1.67	1.67	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite AEG020A-F1714.295.00✓NEPM 2013 B3 & ALS QC StandardDissolved Metals by ICP-MS - Suite BEG020E-F1250.005.00✓NEPM 2013 B3 & ALS QC StandardFluoride by PC TitratorEK040P1205.005.00✓NEPM 2013 B3 & ALS QC StandardMajor Cations - DissolvedED039F1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite and Nitrate as N (NOx) by Discrete AnalyserEK057G11010.005.00✓NEPM 2013 B3 & ALS QC StandardPAH/Phenols (GC/MS - SIM)EP075(SIM)11010.005.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK057G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEK057G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserEG052G1250.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserEG052G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserEG052G1128.335.00✓NEPM 2013 B3 & ALS QC Standard<	Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator EK040P 1 20 5.00 5.00 V NEPM 2013 B3 & ALS QC Standard Major Cations - Dissolved ED093F 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite and Nitrate as N (NCx) by Discrete Analyser EK059G 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite as N (NCx) by Discrete Analyser EK057G 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard PAH/Phenols (GC/MS - SIM) EP075(SIM) 1 10 10.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Reactive Phosphorus as P-By Discrete Analyser EK071G 1 7 14.29 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Standard Anions -by IC (Extended Method) ED009.X 1 2 50.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Sulfate (Turbidimetric) as S04 2- by Discrete Analyser ED041G 1 12 8.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Sulfate (Turbidimetric) as	Dissolved Metals by ICP-MS - Suite A		1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - DissolvedEnd of the D093F1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite as N by Discrete AnalyserEK057G11010.005.00✓NEPM 2013 B3 & ALS QC StandardPAH/Phenols (GC/MS - SIM)EP075(SIM)11010.005.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK057G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSilcia (Reactive) by Discrete AnalyserEG052G1250.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1250.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK026GS1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA025H1195.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0651175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserER067G	Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1205.005.00✓NEPM 2013 B3 & ALS QC StandardNitrite as N by Discrete AnalyserEK057G11010.005.00✓NEPM 2013 B3 & ALS QC StandardPAH/Phenols (GC/MS - SIM)EP075(SIM)11010.005.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1250.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1250.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserEK0256F1195.265.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserEK0256F1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEA015H1205.005.00✓ <td< td=""><td>Fluoride by PC Titrator</td><td>EK040P</td><td>1</td><td>20</td><td>5.00</td><td>5.00</td><td>~</td><td>NEPM 2013 B3 & ALS QC Standard</td></td<>	Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete AnalyserEK057G110010.005.00✓NEPM 2013 B3 & ALS QC StandardPAH/Phenols (GC/MS - SIM)EP075(SIM)11010.005.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSlica (Reactive) by Discrete AnalyserEG052G1250.005.00✓NEPM 2013 B3 & ALS QC StandardSlandard Anions -by IC (Extended Method)ED009-X1250.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G120 </td <td>Major Cations - Dissolved</td> <td>ED093F</td> <td>1</td> <td>20</td> <td>5.00</td> <td>5.00</td> <td>~</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	Major Cations - Dissolved	ED093F	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
PAH/Phenois (GC/MS - SIM)EP075(SIM)11010.005.00✓NEPM 2013 B3 & ALS QC StandardReactive Phosphorus as P-By Discrete AnalyserEK071G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1250.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1250.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EK026F110195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Dis	Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete AnalyserEK071G1714.295.00✓NEPM 2013 B3 & ALS QC StandardSilica (Reactive) by Discrete AnalyserEG052G1250.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1250.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00✓NEPM 2013 B3 & ALS QC StandardTRH	Nitrite as N by Discrete Analyser	EK057G	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete AnalyserEG052G1250.005.00✓NEPM 2013 B3 & ALS QC StandardStandard Anions -by IC (Extended Method)ED009-X1250.005.00✓NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK026SF1175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711205.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard	PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)ED009-X1250.005.00NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1175.885.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711205.005.00✓NEPM 2013 B3 & ALS QC StandardTRH - Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard	Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)ED009-x1250.005.00√NEPM 2013 B3 & ALS QC StandardSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide bolids (High Level)EA015H1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEF00711205.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard	Silica (Reactive) by Discrete Analyser	EG052G	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G1128.335.00✓NEPM 2013 B3 & ALS QC StandardSuspended Solids (High Level)EA025H1205.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0071205.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard	Standard Anions -by IC (Extended Method)		1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)EA025H1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Cyanide by Segmented Flow AnalyserEK026SF1195.265.00✓NEPM 2013 B3 & ALS QC StandardTotal Dissolved Solids (High Level)EA015H1205.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051175.885.00✓NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.00✓NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0051205.005.00✓NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00✓NEPM 2013 B3 & ALS QC Standard	Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser		1	12	8.33	5.00		NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)EA015H1205.005.00NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051175.885.00NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP00711205.005.00NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00NEPM 2013 B3 & ALS QC Standard	Suspended Solids (High Level)		1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)EA015H1205.005.00NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0051175.885.00NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP00711205.005.00NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00NEPM 2013 B3 & ALS QC Standard	Total Cyanide by Segmented Flow Analyser		1	19	5.26			
Total Organic CarbonEP0051175.885.00NEPM 2013 B3 & ALS QC StandardTotal Phosphorus as P By Discrete AnalyserEK067G1205.005.00NEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711205.005.00NEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00NEPM 2013 B3 & ALS QC Standard	Total Dissolved Solids (High Level)		1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete AnalyserEK067G1205.005.00MEPM 2013 B3 & ALS QC StandardTRH - Semivolatile FractionEP0711205.005.00MEPM 2013 B3 & ALS QC StandardTRH Volatiles/BTEXEP0801205.005.00MEPM 2013 B3 & ALS QC Standard	Total Organic Carbon		1	17	5.88	5.00		NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction EP071 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Volatiles/BTEX EP080 1 20 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Total Phosphorus as P By Discrete Analyser		1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEXEP0801205.005.00VNEPM 2013 B3 & ALS QC Standard			1	20				NEPM 2013 B3 & ALS QC Standard
	TRH Volatiles/BTEX							
	Matrix Spikes (MS)	2. 300					-	

Page	: 8 of 11
Work Order	: ES2213939
Client	: EMM CONSULTING PTY LTD
Project	:

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
C1 - C4 Gases	EP033	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	10	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Silica (Reactive) by Discrete Analyser	EG052G	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Standard Anions -by IC (Extended Method)	ED009-X	0	2	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	20	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Standard Anions -by IC (Extended Method)	ED009-X	WATER	In house: Referenced to APHA 4110B. This method is compliant with NEPM Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Silica (Reactive) by Discrete Analyser	EG052G	WATER	In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM Schedule B(3).
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
C1 - C4 Gases	EP033	WATER	Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity.
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

Australia

SYDNEY

Ground floor 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 3 175 Scott Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 1 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

CANBERRA

Suite 2.04 Level 2 15 London Circuit Canberra City ACT 2601

ADELAIDE

Level 4 74 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

Suite 8.03 Level 8 454 Collins Street Melbourne VIC 3000 T 03 9993 1900

PERTH

Suite 9.02 Level 9 109 St Georges Terrace Perth WA 6000 T 08 6430 4800

Canada

TORONTO

2345 Younge Street Suite 300 Toronto ON M4P 2E5 T 647 467 1605

VANCOUVER

60 W 6th Ave Suite 200 Vancouver BC V5Y 1K1 T 604 999 8297

emmconsulting.com.au