Pacific Environment

Consulting • Technologies • Monitoring • Toxicology

Report

AGL GLOUCESTER METHANE MONITORING CAMPAIGN - INTERIM REPORT

AGL ENERGY LIMITED

Job ID. 07081G

17 December 2014

Sydney	Brisbane	Perth	Adelaide	Melbourne
www.pacific-	environment.com			

	Pacific Environment
PROJECT NAME:	AGL Gloucester Methane Monitoring Campaign – Interim Report
JOB ID:	07081G
DOCUMENT CONTROL NUMBER	AQU-NQ-001-07081G
PREPARED FOR:	AGL Energy Limited
APPROVED FOR RELEASE BY:	D. Roddis
DISCLAIMER & COPYRIGHT:	This report is subject to the copyright statement located at www.pacific-environment.com© Pacific Environment Operations Pty Ltd ABN 86 127 101 642

DOCUMENT CONTROL								
VERSION	DATE	COMMENT	PREPARED BY	REVIEWED BY				
DI	12/11/2014		J. Firth	D. Roddis				

Pacific Environment Operations Pty Ltd: ABN 86 127 101 642

BRISBANE

Level 1, 59 Melbourne Street, South Brisbane Qld 4101 PO Box 3306, South Brisbane Qld 4101 Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

Unit 1, 22 Varley Street Yeerongpilly, Qld 4105 Ph: +61 7 3004 6460

ADELAIDE

35 Edward Street, Norwood SA 5067 PO Box 3187, Norwood SA 5067 Ph: +61 8 8332 0960 Fax: +61 7 3844 5858

SYDNEY

Suite 1, Level 1, 146 Arthur Street North Sydney, NSW 2060 Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

MELBOURNE

Level 10, 224 Queen Street Melbourne Vic 3000 Ph: +61 3 9036 2637 Fax: +61 2 9870 0999

PERTH

Level 1, Suite 3 34 Queen Street, Perth WA 6000 Ph: +61 8 9481 4961 Fax: +61 2 9870 0999

DISCLAIMER

Pacific Environment acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services.

Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and Pacific Environment. Pacific Environment is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, Pacific Environment does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to Pacific Environment for its reports.

Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of Pacific Environment.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations and any subsequent discussions with regulatory authorities. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Pacific Environment is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.

CONTENTS

1 INTRODUCTION	5
1.1 Objective	5
2 BACKGROUND	5
2.1 Isotopic signature of CH4	7
2.1.1 Description	7
2.1.2 Determination of isotopic signature specific to Gloucester area	8
3 METHODOLOGY	12
3.1 Baseline field study	12
3.2 Instrumentation	12
3.2.1 Calibration	12
3.3 Mobile monitoring route	14
4 RESULTS AND DISCUSSION	16
4.1 Key findings	17
5 CONCLUSION	18
6 REFERENCES	19
APPENDIX A SPATIAL DISTRIBUTION OF METHANE CONCENTRATIONS BY MONITORING RUN	A-1
APPENDIX B TABULATED RESULTS	B-1
APPENDIX C TIME SERIES OF THE METHANE CONCENTRATION DATA MEASURED AT THE STATIONARY MONITORING SITE	C-1

List of Figures

Figure 2-1: Known sources of fugitive CH4 emissions	7
Figure 2-2: Photos during collection of reference samples	10
Figure 2-3 Box and whisker plot showing δ^{13} C-CH ₄	11
Figure 2-4: Histogram of δ ¹³ C-CH₄ of sample groups	11
Figure 3-1: AGL mobile monitoring kit	13
Figure 3-2: Monitoring routes	15

1 INTRODUCTION

The Gloucester Gas Project, operated by AGL Energy Limited (AGL), is a coal seam gas (CSG) project located in Gloucester, NSW. AGL has State and Government approvals for a concept plan area, including the Stage 1 gas field development area of up to 110 gas wells and associated infrastructure.

In response to community and stakeholder concerns, AGL has undertaken baseline monitoring of ambient methane (CH₄) concentrations in the vicinity of the proposed Gloucester Gas Project wells and across the Gloucester region. Part of this study also comprises ambient monitoring post fracture stimulation and flaring activities.

This is an interim report that provides an overview of the baseline monitoring that has been completed up to 30 October 2014.

1.1 Objective

The objective of this baseline monitoring program is to determine the concentrations of CH₄ that are typically experienced at locations within the Gloucester Gas Project before the project becomes operational so as to establish a baseline case against which future monitoring results can be compared (post fracture stimulation and flaring).

The monitoring program has been designed to measure CH₄ over 202 kilometres (km) within the Gloucester Gas Project. A stationary monitor was also installed for a 10 day period to characterise CH₄ concentrations over time.

This study is considered to represent baseline analysis of the current conditions in the vicinity of the Gloucester area.

2 BACKGROUND

Methane is an important trace gas in atmospheric chemistry and climate science. The most recent measurements report by the World Meteorological Organisation (WMO) indicate the global average CH₄ concentration to have risen to 1.824.ªppm (**WMO**, **2014**). The methane concentration has reportedly doubled over the past two hundred years determined primarily through ice core analyses.

In urban areas, CH₄ concentrations are generally slightly higher due the potential influence of a greater number of sources known to release fugitive CH₄. As part of this study, preliminary monitoring in Sydney's CBD indicates that CH₄ concentrations typically range between 1.8ppm and 2.0ppm. A recent study investigating CH₄ in the city of Boston, USA (**Phillips et al., 2013**) measured concentrations up to 28.6ppm when mapping urban pipeline leaks across the city using a Picarro instrument mounted within a vehicle. This study was able to differentiate between fugitive emissions of CH₄ from urban pipeline leaks and other known sources of CH₄, such as landfill and sewage systems.

Studies completed by **Lowry et al. (2001)** in London, where the greatest CH₄ contributors were reported to be associated with gas storage and distribution systems as well as sewage treatment, measured CH₄ concentrations as high as 6.1ppm when investigating diurnal patterns of CH₄ and δ^{13} C-CH₄. This study observed hourly averages commonly ranging between 1.8ppm and 3.0ppm. Contributors to the diurnal fluctuations were not only influenced by the prevailing meteorological conditions (i.e. temperature inversions), but also periods when the general population tend to use gas appliances (i.e. cooking, hot water systems etc.) **Lowry et al. (2001)** also identified a relationship between wind speed and CH₄ concentration, with higher concentrations associated with lower (<2m/s) wind speeds.

^a For the purposes of this report this value has been rounded to 1.8ppm.

Methane is an effective greenhouse gas, with a global warming potential 28 times greater compared to carbon dioxide, when considered over a 100 year time frame (IPCC AR5, 2013).

Pacific Environment

limited

Natural sources of fugitive CH4 can include:

- Micro-organisms that live in wetlands
- Termites (methane generated by micro-organisms contained within their digestive tract)
- Volcanoes
- Naturally occurring open coal seams
- Permafrost thawing
- Hydrates and clathrates (CH4 trapped in very cold continental and oceanic waters).

Anthropogenic sources (those generated by human activities), are commonly associated with agricultural practices, such as livestock emissions (ruminant digestion processes) or from rice paddies. Fugitive CH₄ emissions from waste, such as sewage and landfill are primarily generated through fermentation processes and are most significant in urbanised areas. Other fugitive sources of CH₄ are released during mining of coal or oil and gas production.

Figure 2-1 graphically depicts the main sources and sinks of methane in the environment. Any of these sources may be expected to yield CH₄ concentrations of >10ppm, however with no implications for health.

There are no known health effects associated with methane and it is not defined as a hazardous air pollutant (**US EPA**, **2014**). As discussed in above there are trigger level concentrations for CH₄ that are governed by its potential for asphyxiation or explosivity.

The primary removal mechanism of methane from the atmosphere is through chemical reactions with the hydroxyl radical (OH) forming carbon dioxide (CO_2). The OH reacts with a number of gases in the atmosphere and is commonly referred to as a chemical species that 'cleans' the atmosphere.

As an organic molecule, advanced analytical techniques may be applied to determine the source of the methane. This can be achieved by measuring the proportion of ¹²C compared with ¹³C within a given sample of CH₄ molecules (referred to as the isotopic ratio).

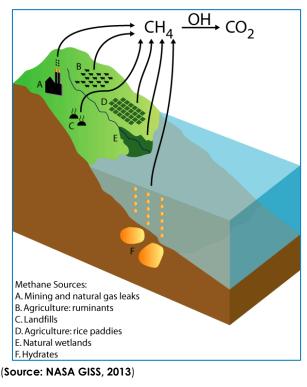


Figure 2-1: Known sources of fugitive CH₄ emissions

2.1 Isotopic signature of CH₄

2.1.1 Description

The isotopic ratio of carbon in CH₄ (δ^{13} C-CH₄, referred to above) is a measure of the stable isotopes of carbon (13 C: 12 C) within the CH₄ gas sampled, reported in parts per thousand.

Often referred to as the isotopic signature or fingerprint, this parameter is relevant since different sources and sinks of CH₄ have different affinity for the ¹²C and ¹³C isotopes. By analysing the δ^{13} C-CH₄, different sources of CH₄ in the atmosphere may be distinguished.

For example, there is a known preferential uptake of ¹²C over ¹³C by plants and microbial activity, which means that biogenic CH₄ is generally lighter than thermogenic CH₄ (i.e. that created via the thermal breakdown of heavier hydrocarbons under high temperature/pressure conditions).

The units of δ^{13} C are parts per thousand (per mil, ‰), and involve measurement against a calcium carbonate standard referred to as Pee Dee Belemnite. This material has an unusually high 13 C: 12 C ratio, and as a result, most natural material analysed in this manner results in a negative δ^{13} C. The more negative the δ^{13} C-CH₄ value, the lower the 13 C: 12 C ratio, and thus the lighter the CH₄ being sampled.

The isotopic composition of common methane sources has been characterised in a number of studies of the past several decades. **Table 2-1** provides a summary of the most common methane sources and the δ^{13} C-CH₄ for each source. These δ^{13} C-CH₄ are consistent with those established in other studies discussed in *Initial report on the Independent Review of Coal Seam Gas Activities in NSW* (**CS&E, 2013**) where, broadly speaking, δ^{13} C-CH₄ values less than -55‰ are associated with biogenic methane and δ^{13} C-CH₄ values above -55‰ are related to thermogenic sources of methane. It is important to note that the δ^{13} C-CH₄ characteristic of a source is more commonly observed as a range of measurements than a single discrete number.

Source	δ¹³C-CH₄ (‰)
Natural sources	
Wetlands (swamps)	-55±3
Wetlands (bogs and tundra)	-65±5
Oceans	-59
Mud volcanoes	-40
Termites	-57
Wild animals	-62
Anthropogenic sources	
Biomass burning (C4 vegetation)	-17±3
Biomass burning (C3 vegetation)	-26±3
Enteric fermentation (C4 vegetation)	-49±4
Enteric fermentation (C3 vegetation)	-70±4
Landfill	-53±2
Domestic sewage	-57±3
Rice paddies	-62±3
Coal extraction	-35±3
Gas extraction (North Sea)	-34±3
Gas extraction (Siberia)	-50±3
Residential	-38

Table 2-1: δ¹³C-CH₄ of common natural and anthropogenic methane sources

Source: Montiel et al. (2011), Dlugokencky et al. (2011)

Scientists are able to ascertain the potential source of a fugitive CH₄ emission by comparing the δ^{13} C-CH₄ of a sample with known ranges of δ^{13} C-CH₄ determined from a reference data set. The reference data set could either be from values published in scientific literature, as shown in **Table 2-1**, or known sources of methane in the area being studied (e.g. landfills, wetlands, and mining operations).

It should be noted that there are limitations associated with using of δ^{13} C-CH₄ values to categorically identify a CH₄ source, particularly when measuring under ambient conditions. This is because at ambient concentrations (i.e. the global average being 1.8ppm (**WMO**, **2014**) will be by definition a mixture of multiple sources, meaning there is significantly more variability (or 'noise') in the δ^{13} C-CH₄ values measured.

The higher the concentration of CH₄ observed (i.e. the stronger the signal), the more effective the use of δ^{13} C-CH₄ as a metric of CH₄ source. Therefore, at low, well mixed CH₄ concentrations (such as those observed during the study period) interpretation of the δ^{13} C-CH₄ results are to be considered indicative.

2.1.2 Determination of isotopic signature specific to Gloucester area

Prior to the commencement of the baseline CH₄ monitoring program, the δ^{13} C-CH₄ for potential sources of CH₄ in the Gloucester area has been characterised. A summary of the findings of this study are provided in the following section.

Samples of AGL gas from two representative gas wells were collected and analysed. Upon commissioning of the Waukivory pilot well additional gas samples will be collected and analysed to provide a more extensive dataset.

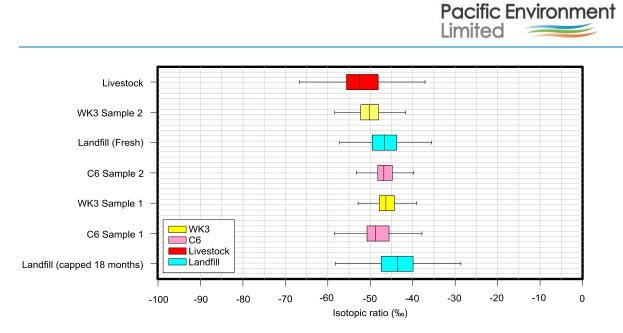
Two additional sample sites at a nearby landfill and livestock were selected based on the assumption that these would also be significant contributors of CH₄ in the Gloucester air shed. A description of each gas sample source is as follows:

Pacific Environment

l imited

- Landfill (fresh) fresh landfill that was placed within the past month;
- Landfill (capped 18 months) landfill that has been placed within the past 6 12 months;
- Livestock (cow manure) fresh cow manure
- Photographs taken during the collection of the samples are shown in Figure 2-2.

The landfill and livestock collected using an isolation flux hood, configured in similar method as employed for area source odour sampling (**NSW EPA 2006**).


The results of the δ^{13} C-CH₄ analysis are presented in **Figure 2-3**. The average δ^{13} C-CH₄ across all samples ranged between -44‰ (landfill capped 18 months) and -51‰ (livestock). The samples collected from the landfill and AGL gas samples were in general lower (more negative) than the sample for the livestock. This is in agreement with the preferential uptake of ¹²C over ¹³C by microbial activity discussed above, resulting in typically lighter CH₄, with a lower δ^{13} C-CH₄ from biogenic sources. The results also compare well with those reported in the literature (**Montiel et al. 2011**).

For the gas well samples, the range of the average δ^{13} C-CH₄ was between -50‰ and -44‰. This indicates that the δ^{13} C-CH₄ of coal seam gas can vary across the gas well network. The δ^{13} C-CH₄ can also vary within each gas bag sampled as shown in the range of δ^{13} C-CH₄ measured from each gas bag (e.g. WK3 Samples 1 and 2).

Figure 2-3 shows a histogram of the δ^{13} C-CH₄ for all samples. The three sample groups show a unique 'fingerprint' of the δ^{13} C-CH₄ values measured. This data can be used to compare with field samples to ascertain the source of the CH₄.

Figure 2-2: Photos during collection of reference samples

Figure 2-3 Box and whisker plot showing $\delta^{13}\text{C-CH}_4$

Note: The centreline of the box indicates the median value. The left side of the box indicates the lower quartile and the right indicates the upper quartile. The far left and far right error bars indicate the minimum and maximum of the values measured.

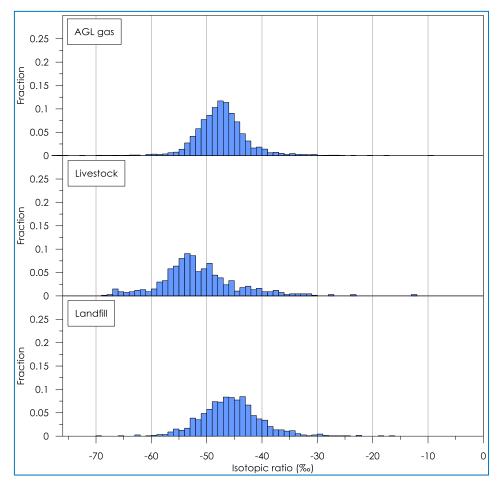


Figure 2-4: Histogram of $\delta^{13}C$ -CH₄ of sample groups

3 METHODOLOGY

3.1 Baseline field study

The field campaign has been designed to collect ambient CH₄ concentration data from across the Gloucester region. To gather a sufficient dataset for this baseline dataset an initial four week campaign was completed in August 2013. Since then, two additional runs were completed in January 2014 and October 2014.

Mobile monitoring (i.e. surveying methane concentrations using an instrument mounted within a vehicle) was completed over 202 km each week. Further detail as to site selection is provided in **Section 3.3.** A stationary monitor was also installed as part of the August 2013 works to characterise CH₄ concentrations over time.

To complete the baseline survey of the Gloucester area in August 2013 and January 2014, the monitoring was conducted over two weekdays with different days selected each week to remove the potential for systematic bias in the sampling. On each day the selected route was completed in either the morning or afternoon to account for potential diurnal variation in CH₄.

An additional baseline run of the Gloucester area was undertaken in October 2014, the monitoring was conducted over one weekday. On this day the selected route was completed in the morning and afternoon to account for potential diurnal variation in CH₄.

3.2 Instrumentation

The samples were analysed using a Picarro G-2031-i Cavity Ring Down Spectrometer (Picarro) that measures the CH₄ concentrations and corresponding δ^{13} C-CH₄. The Picarro was operated in high precision mode.

The Picarro monitoring system was configured for this mobile monitoring campaign, measuring CH₄ concentration, isotopic values for CH₄ along with GPS coordinates. The system components are housed within an AGL vehicle (Toyota Land Cruiser Troop Carrier) and configured to meet the recommendations of the Picarro Mobile Kit User's Guide (**Picarro, 2011**). **Figure 3-1** provides an image of the mobile set up used in the AGL field study.

A second Picarro (G-2201-i) was also installed to provide continuous CH₄ concentration measurements at one location.

The Picarro has been used extensively in other overseas studies (**Phillips et al., 2012**) and in Australia as outlined in the *Initial report on the Independent Review of Coal Seam Gas Activities in NSW* (**CS&E**, **2013**).

3.2.1 Calibration

Prior to the commencement of the monitoring campaign the Picarro was calibrated using CSIRO's calibration gases located at their Energy Technology Centre in Mayfield West, NSW.

To ensure the ongoing accuracy and consistency of the CH₄ concentrations, weekly single point calibrations were completed using bottled CH₄ gas of known concentration. On a monthly basis, multi-point calibrations were completed over a range of known CH₄ concentrations to ensure instrument linearity. All calibrations were completed using National Association of Testing Authority (NATA) certified calibration gases.

All calibration during the monitoring period showed little deviation in the CH₄ concentration measurements with time, and extremely good instrument linearity.

Figure 3-1: AGL mobile monitoring kit

3.3 Mobile monitoring route

To meet the objective of this screening baseline study 'to determine the concentrations of CH₄ that are typically experienced at locations within the Gloucester Gas Project area', the monitoring program has been designed to measure CH₄ over a 202 km route around the Gloucester region.

Figure 3-2 shows the routes used for the screening baseline study. Table 3-1 provides a summary description of each route.

Figure 3-2 also shows the location of AGL's Gloucester weather station. The second stationary Picarro was installed adjacent to the weather station so that meteorological influences can be accounted for in the CH₄ concentration measurements.

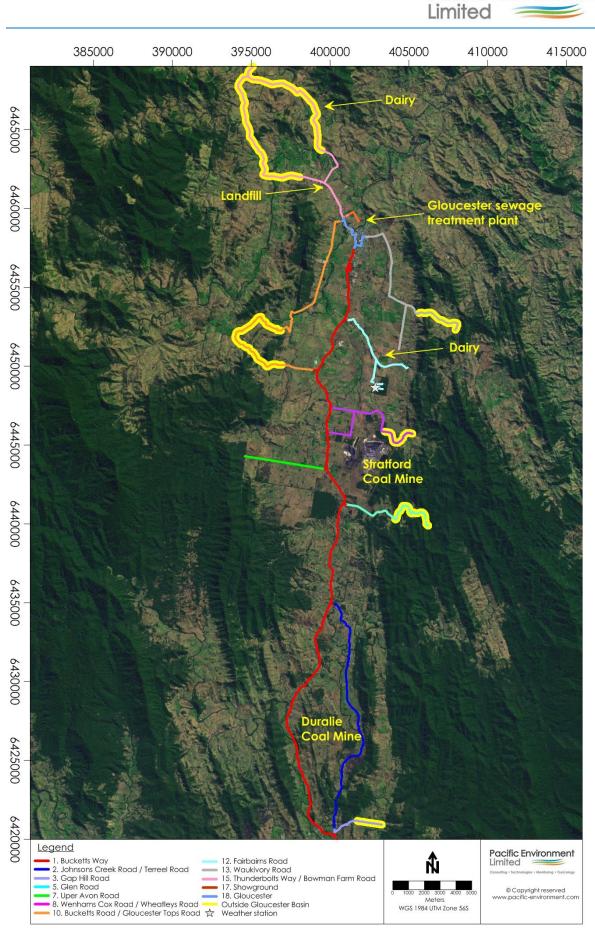


Figure 3-2: Monitoring routes

Pacific Environment

Site number	Site description	Location relative to Gloucester geological basin (coal measures)
Route 1	Bucketts Way	Inside Basin
Route 2	Johnsons Creek Road / Terreel Road	Inside Basin
Route 3	Gap Hill Road	Inside Basin
Route 4	Gap Hill Road	Outside Basin
Route 5	Glen Road	Inside Basin
Route 6	Glen Road	Outside Basin
Route 7	Upper Avon Road	Inside Basin
Route 8	Wenhams Cox Road / Wheatleys Road	Inside Basin
Route 9	Wenhams Cox Road / Wheatleys Road	Outside Basin
Route 10	Bucketts Road / Gloucester Tops Road	Inside Basin
Route 11	Bucketts Road / Gloucester Tops Road	Outside Basin
Route 12	Fairbairns Road	Inside Basin
Route 13	Waukivory Road	Inside Basin
Route 14	Waukivory Road	Outside Basin
Route 15	Thunderbolts Way / Bowman Farm Road	Inside Basin
Route 16 Thunderbolts Way / Bowman Farm Road		Outside Basin
Route 17	Showground	Inside Basin
Route 18	Gloucester	Inside Basin

Table 3-1: Description of monitoring locations

4 RESULTS AND DISCUSSION

At the time of writing only the baseline component of the monitoring program has been completed. A summary of the dates and whether the run was completed in the morning (7am – 12pm) or afternoon (12pm - 6:30pm) are provided in **Table 4-1**.

Table 4-1: Summary of monitoring runs				
Run number	Date	time		
Run 1	29/07/2013	Afternoon		
Run 2	30/07/2013	Morning		
Run 3	06/08/2013	Afternoon		
Run 4	07/08/2013	Morning		
Run 5	14/08/2013	Afternoon		
Run 6	15/08/2013	Morning		
Run 7	19/08/2013	Afternoon		
Run 8	20/08/2013	Morning		
Run 9	21/01/2014	Afternoon		
Run 10	22/01/2014	Morning		
Run 11	20/10/2014	Morning		
Run 12	20/10/2014	Afternoon		

Provided in **Appendix A** are a series of maps showing the CH₄ concentrations as measured along each route measured on the day of the monitoring. Summary tables of the monitoring results for the 18 routes within the Gloucester area are provided as **Appendix B** (see **Figure 3-2** for the location of each route). A time series during the initial four week campaign of the CH₄ concentration data measured at the stationary monitoring site is presented in **Appendix C**.

Pacific Environment

limited

A significant amount of data has been collected during the 12 monitoring runs completed to date. Rather than discussing all monitoring results, additional discussion is provided where elevated CH_4 concentrations were measured or field observations warranted further investigation.

For the purposes of this study, a CH₄ concentration is considered 'elevated' if the concentration shows to be above the global average of 1.8 ppm for 2012 as established by **WMO (2014)**.

4.1 Key findings

The following points provide an overview of the monitoring results:

- The 1 second interval CH₄ concentration of CH₄ ranged between 1.7 ppm to 3.9 ppm across all routes and runs investigated during the field campaign.
- The highest 1-second CH₄ concentration was 3.9 ppm measured near the showground (Route 17) during Run 5 (see Table 4-1). The δ¹³C-CH₄ values measured on this route were also shown to be more negative (i.e. more biogenic) than values measured along other routes during this week. Route 17 is located adjacent to sewage treatment plant.
- On average, the CH₄ concentrations measured during mobile monitoring were lowest during Run 3.
- In general, CH₄ concentrations in the Gloucester area are considered low with an approximate baseline concentration of 1.8 ppm. This compares well with the global average background concentration report for 2012 by WMO (2014).
- Route 17 (Showground) experienced the highest 1-second CH₄ concentrations, followed by Route 1 (Bucketts Way).
- There is negligible difference between the CH₄ concentrations measured inside and outside of the Gloucester Basin Coal Measures.
- At the stationary monitoring location the highest CH₄ concentration was 4.1 ppm, measured at 1:43am on 31 August 2013.
- The stationary monitoring data indicate that there is a diurnal trend in CH₄ concentration, with the highest levels occurring during the late evening and early hours of the morning. This is most likely associated with meteorological conditions (i.e. low atmospheric mixing heights due to temperature inversion conditions).
- Temperature inversion conditions show negligible influence on CH₄ concentrations in the Gloucester area measured using mobile monitoring. This is likely due to the mobile monitoring not capturing the hours of the day (i.e. 10 pm to 4am) when CH₄ concentration is shown to be higher as evidenced with the data from the stationary monitoring site.
- Based on field observations and results of similar studies in Camden (Pacific Environment, 2014) in addition to scientific literature (Montiel et al., 2011; Dlugokencky et al., 2011) sources of CH₄ in the Gloucester area have been identified and include:
 - o Landfill
 - Sewage treatment Plant
 - o Agriculture
- The average δ^{13} C-CH₄ ranged between -37‰ and -46‰. It should be noted that these are averaged values, where the 1 second measurements fluctuate significantly.

5 CONCLUSION

This interim monitoring report provides the baseline results and high level analysis of a mobile monitoring campaign measuring the concentration and δ^{13} C-CH₄ of CH₄ in the Gloucester area completed by Pacific Environment on behalf of AGL.

This study is considered to represent a baseline analysis of the current conditions in the vicinity of the Gloucester Gas Project that is currently being developed by AGL.

In general, and based on data collected to date, CH₄ concentrations in the Gloucester area are considered low with an approximate baseline concentration of 1.8 ppm.

The CH₄ concentrations measured in the study area are considered close to the global average background concentrations report by **WMO (2014)**.

The highest CH₄ concentrations were observed along Route 17 (Showground), adjacent to the sewage treatment plant with a 1-second CH₄ concentration of 3.9 ppm.

Sources of CH₄ in the Gloucester have been identified and include:

- Landfill
- Sewage treatment Plant
- Agriculture.

6 REFERENCES

Chief Scientist and Engineer (CS&E) (2013), Initial report on the Independent Review of Coal Seam Gas Activities in NSW, prepared for the Premier of NSW, July 2013.

Dlugokencky, et al. (2011), Global atmospheric methane: budget, changes and dangers, Phil. Trans.R. Soc. A, 369, 2058–2072.

Intergovernmental Panel on Climate Change (IPCC) AR5 (2013), Intergovernmental Panel on Climate Change Fifth Assessment Report.

Lowry et al. (2001), London methane emissions: Use of diurnal changes in concentration and ¹³&C to identify urban sources and verify inventories. Journal of Geophysical Research 106, 7424-7448.

Montiel, G. (2011), Interpreting methane variation in the past two decades using measurements of CH4 mixing ratio and isotopic composition, Atmospheric Chemistry and Physics, 11, 9141-9153.

National Aeronautics and Space Administration Goddard Institute for Space Studies (NASA GISS) (2013), website: http://www.giss.nasa.gov/research/features/200409_methane/, cited 8 August 2013.

Picarro (2011), Picarro Mobile Kit User's Guide.

Phillips et al., (2012), Mapping urban pipeline leaks: Methane leaks across Boston, Environmental Pollution 173, 1-4.

United States Environmental Protection Agency (US EPA) (2014), http://www.epa.gov/ttn/atw/188polls.html.

World Meteorological Organisation (WMO) (2014) WMO Greenhouse Gas Bulletin, September 2014.

Appendix A SPATIAL DISTRIBUTION OF METHANE CONCENTRATIONS BY MONITORING RUN

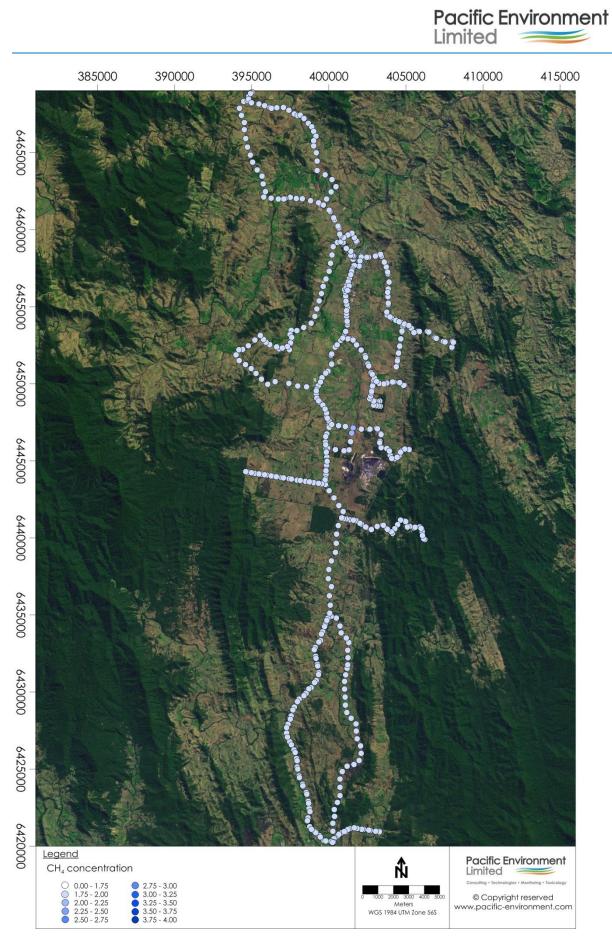


Figure A- 1: CH₄ concentration for Run 1 (29/07/2013 – Afternoon)

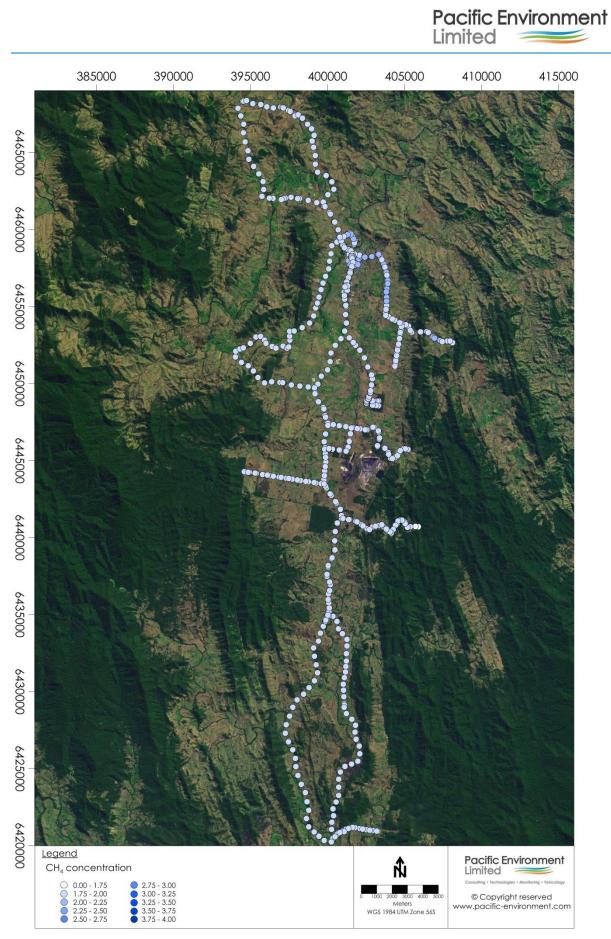


Figure A- 2: CH₄ concentration for Run 2 (30/07/2013 – Morning)

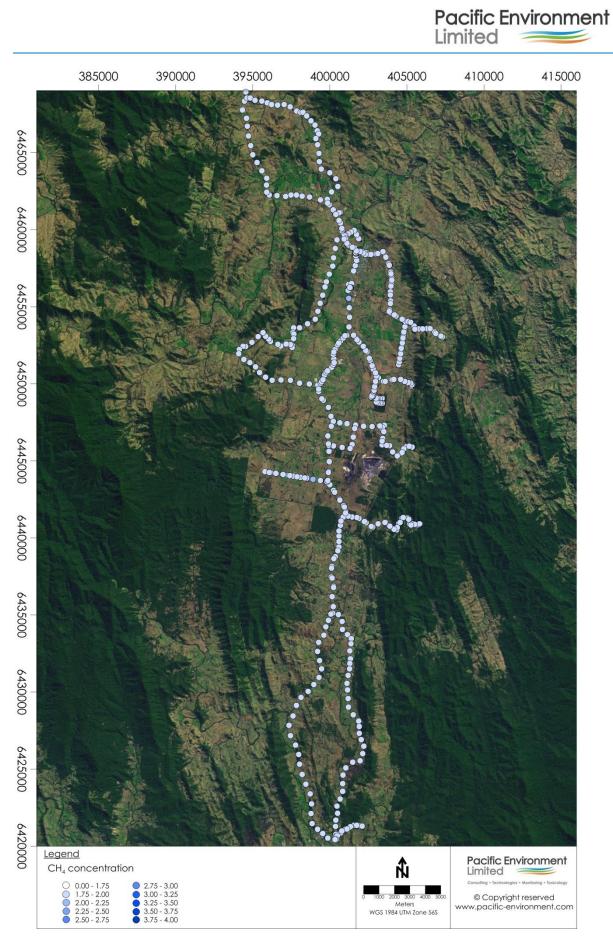


Figure A- 3: CH₄ concentration for Run 3 (06/08/2013 – Afternoon)

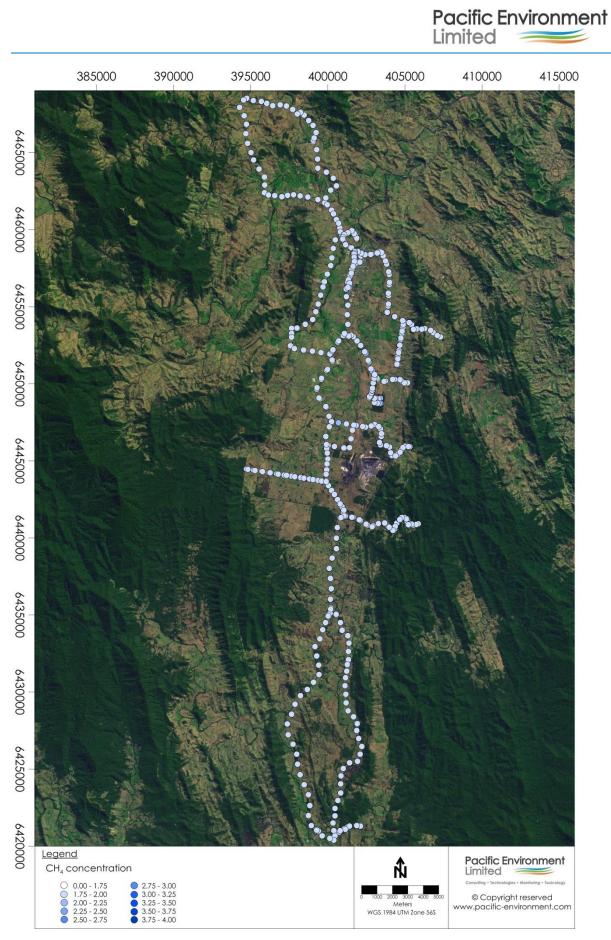


Figure A- 4: CH₄ concentration for Run 4 (07/08/2013 – Morning)

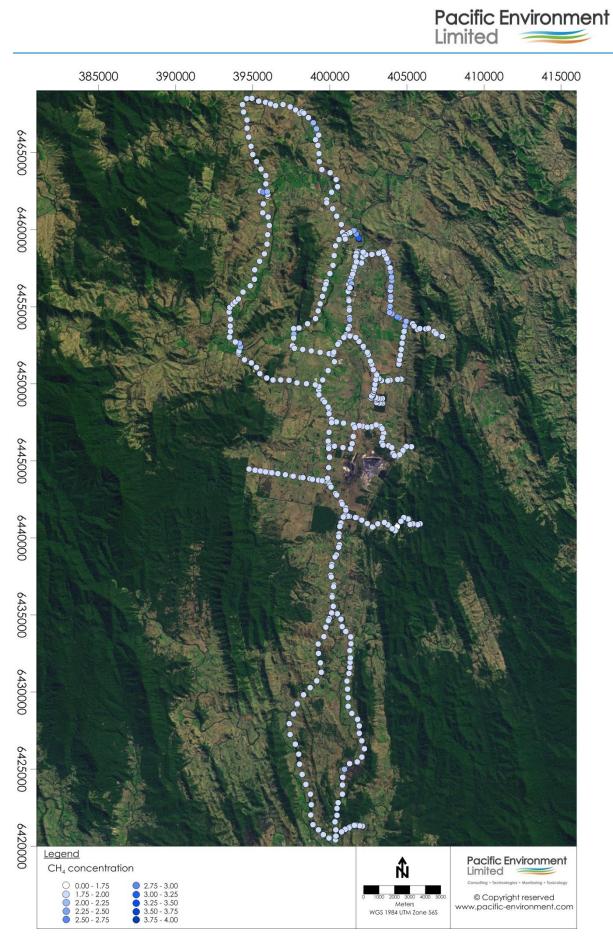


Figure A- 5: CH₄ concentration for Run 5 (14/08/2013 – Afternoon)

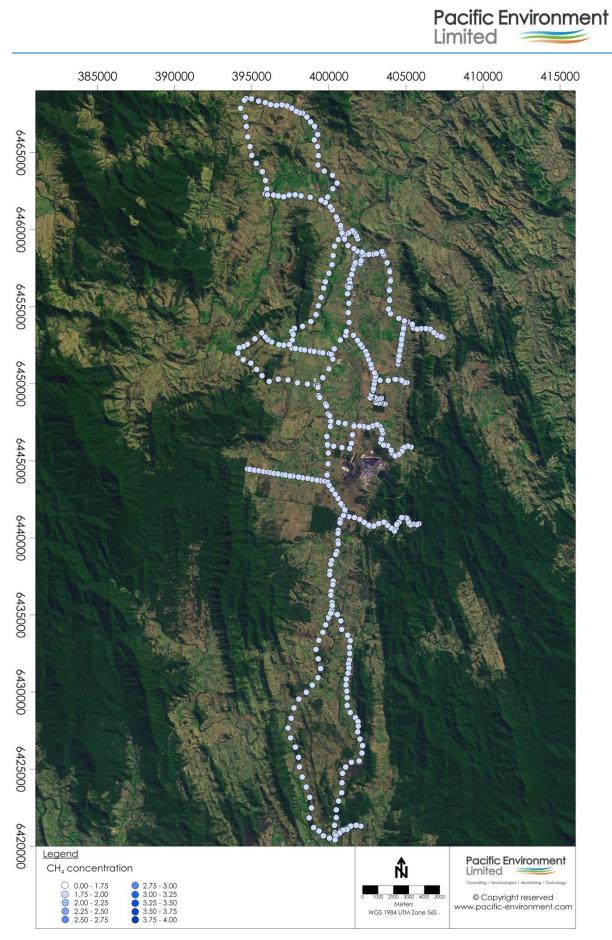


Figure A- 6: CH₄ concentration for Run 6 (15/08/2013 – Morning)

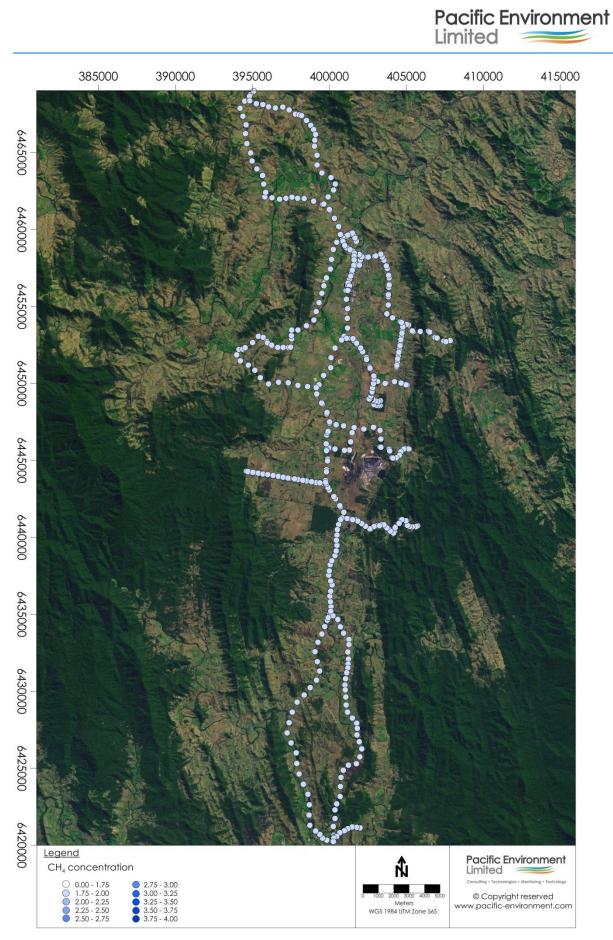


Figure A- 7: CH₄ concentration for Run 7 (19/08/2013 – Afternoon)

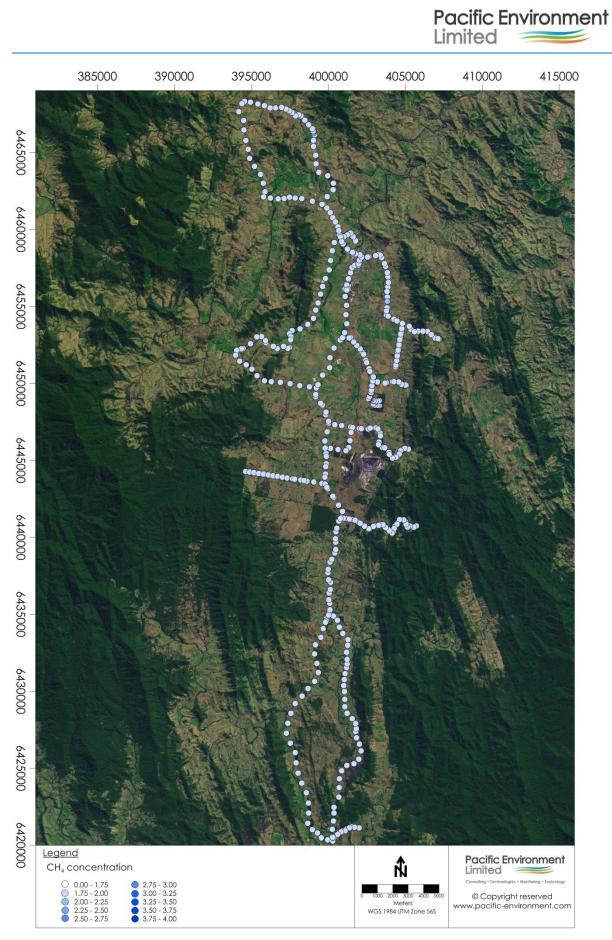


Figure A- 8: CH₄ concentration for Run 8 (20/08/2013 – Morning)

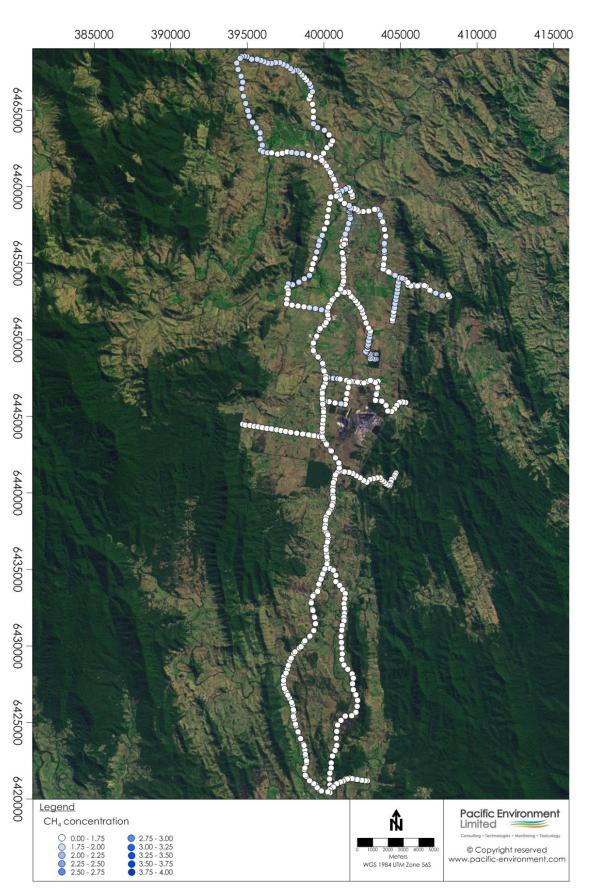


Figure A- 9: CH₄ concentration for Run 9 (21/01/2014 – Afternoon)

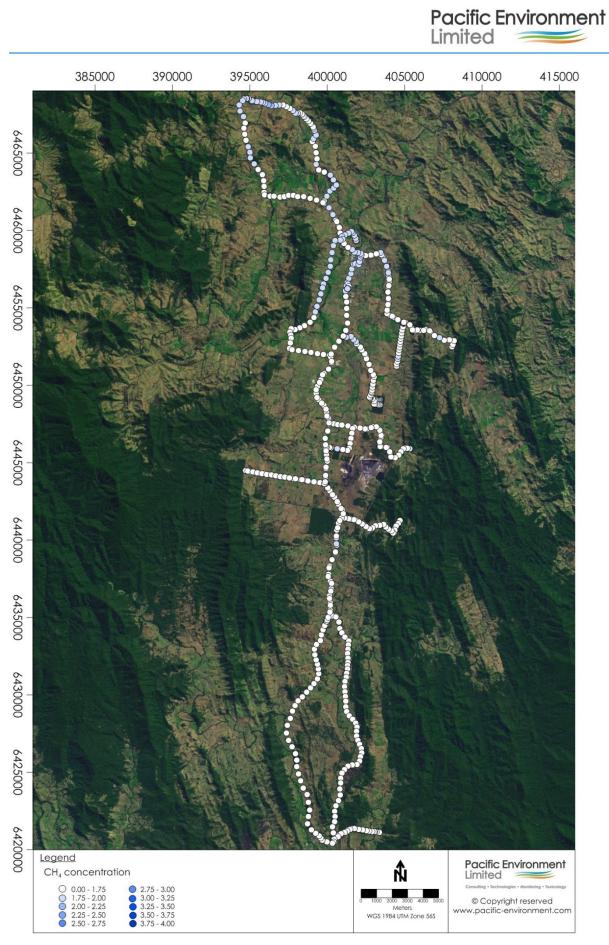


Figure A- 10: CH₄ concentration for Run 10 (22/01/2014 – Morning)

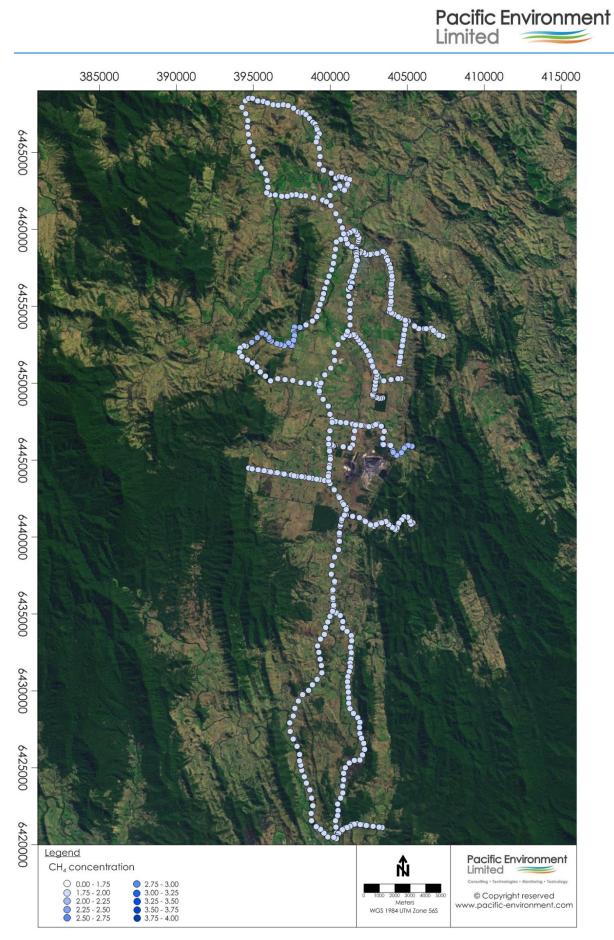


Figure A- 11: CH₄ concentration for Run 11 (20/10/2014 – Morning)

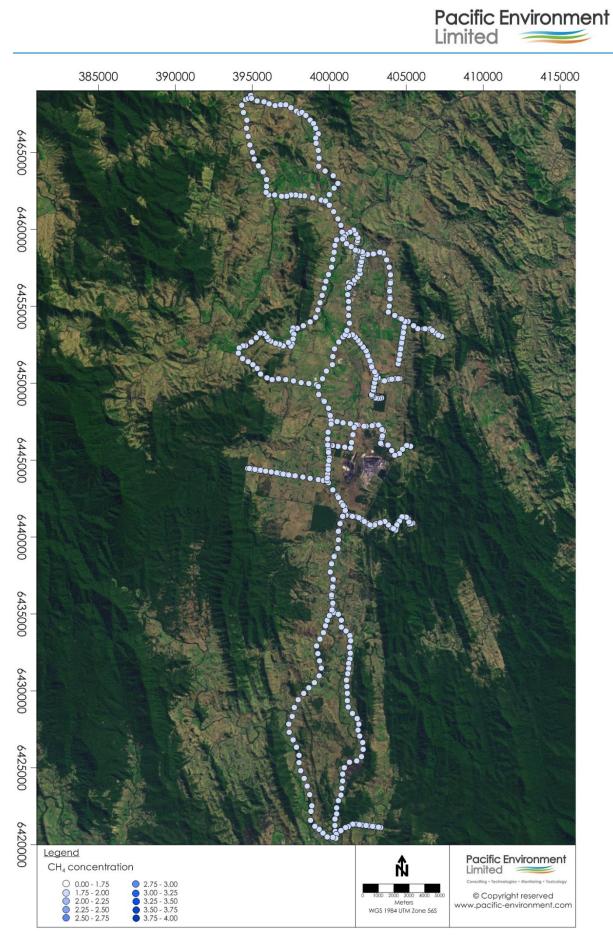


Figure A- 12: CH₄ concentration for Run 12 (20/10/2014 – Afternoon)

Appendix B TABULATED RESULTS

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	29/07/2013	Clear	1.8	1.8	2.2	-39
Route 2	29/07/2013	Clear	1.8	1.8	1.8	-40
Route 3	29/07/2013	Clear	1.8	1.8	1.8	-41
Route 4	29/07/2013	Clear	1.8	1.8	1.8	-40
Route 5	29/07/2013	Clear	1.8	1.8	1.8	-38
Route 6	29/07/2013	Clear	1.8	1.8	1.8	-39
Route 7	29/07/2013	Clear	1.8	1.8	1.9	-42
Route 8	29/07/2013	Clear	1.9	1.8	2.1	-41
Route 9	29/07/2013	Clear	1.8	1.8	1.9	-41
Route 10	29/07/2013	Clear	1.8	1.8	2.0	-41
Route 11	29/07/2013	Clear	1.8	1.8	2.0	-41
Route 12	29/07/2013	Clear	1.8	1.8	2.0	-41
Route 13	30/07/2013	Clear	1.8	1.8	1.8	-41
Route 14	30/07/2013	Clear	1.8	1.8	1.8	-39
Route 15	29/07/2013	Clear	1.8	1.8	1.9	-40
Route 16	29/07/2013	Clear	1.8	1.8	1.8	-41
Route 17	29/07/2013	Clear	1.8	1.8	2.0	-39
Route 18	29/07/2013	Clear	1.8	1.8	1.9	-37

Table B- 1: CH₄ concentration for Run 1 (29/07/2013 – Afternoon)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	30/07/2013	Clear	1.9	1.8	2.2	-41
Route 2	30/07/2013	Clear	1.8	1.8	1.8	-41
Route 3	30/07/2013	Clear	1.8	1.8	1.8	-41
Route 4	30/07/2013	Clear	1.8	1.8	1.8	-44
Route 5	30/07/2013	Clear	1.8	1.8	1.9	-41
Route 6	30/07/2013	Clear	1.8	1.7	1.8	-42
Route 7	30/07/2013	Clear	1.8	1.8	1.8	-41
Route 8	30/07/2013	Clear	1.8	1.8	1.8	-40
Route 9	30/07/2013	Clear	1.8	1.8	1.8	-42
Route 10	30/07/2013	Clear	1.8	1.8	1.8	-40
Route 11	30/07/2013	Clear	1.8	1.8	1.8	-40
Route 12	30/07/2013	Clear	1.8	1.8	1.8	-40
Route 13	30/07/2013	Clear	1.9	1.8	2.2	-43
Route 14	30/07/2013	Clear	1.9	1.8	2.1	-43
Route 15	30/07/2013	Clear	1.8	1.8	2.0	-40
Route 16	30/07/2013	Clear	1.8	1.8	1.8	-41
Route 17	30/07/2013	Clear	2.0	1.9	2.2	-43
Route 18	30/07/2013	Clear	1.9	1.8	2.3	-42

Table B- 2: CH₄ concentration for Run 2 (30/07/2013 – Morning)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	6/08/2013	Clear	1.8	1.8	2.0	-39
Route 2	6/08/2013	Clear	1.8	1.8	1.9	-40
Route 3	6/08/2013	Clear	1.8	1.8	1.8	-38
Route 4	6/08/2013	Clear	1.9	1.8	1.9	-39
Route 5	6/08/2013	Clear	1.8	1.8	1.9	-39
Route 6	6/08/2013	Clear	1.8	1.8	1.8	-41
Route 7	6/08/2013	Clear	1.9	1.8	2.2	-41
Route 8	6/08/2013	Clear	1.8	1.8	1.9	-39
Route 9	6/08/2013	Clear	1.8	1.8	1.8	-40
Route 10	6/08/2013	Clear	1.8	1.8	1.8	-41
Route 11	6/08/2013	Clear	1.8	1.8	1.8	-41
Route 12	6/08/2013	Clear	1.8	1.8	1.8	-40
Route 13	6/08/2013	Clear	1.8	1.8	1.8	-40
Route 14	6/08/2013	Clear	1.8	1.8	1.8	-40
Route 15	6/08/2013	Clear	1.8	1.8	1.8	-40
Route 17	6/08/2013	Clear	1.8	1.8	1.9	-41
Route 18	6/08/2013	Clear	1.8	1.8	1.8	-38

Table B- 3: CH₄ concentration for Run 3 (06/08/2013 – Afternoon)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	7/08/2013	Clear	1.8	1.8	2.0	-40
Route 2	7/08/2013	Clear	1.8	1.8	1.9	-42
Route 3	7/08/2013	Clear	1.8	1.8	1.8	-39
Route 4	7/08/2013	Clear	1.8	1.8	1.8	-39
Route 5	7/08/2013	Clear	1.8	1.8	1.8	-40
Route 6	7/08/2013	Clear	1.8	1.7	1.8	-44
Route 7	7/08/2013	Clear	1.8	1.8	1.8	-45
Route 8	7/08/2013	Clear	1.9	1.8	2.0	-42
Route 9	7/08/2013	Clear	1.8	1.8	1.8	-45
Route 10	7/08/2013	Clear	1.8	1.8	1.9	-40
Route 11	7/08/2013	Clear	1.9	1.8	2.3	-40
Route 12	7/08/2013	Clear	1.8	1.8	1.8	-42
Route 13	7/08/2013	Clear	1.8	1.8	1.8	-41
Route 14	7/08/2013	Clear	1.9	1.8	2.0	-40
Route 15	7/08/2013	Clear	1.8	1.8	2.0	-40
Route 16	7/08/2013	Clear	1.9	1.8	2.0	-39
Route 17	7/08/2013	Clear	1.8	1.8	2.0	-40
Route 18	7/08/2013	Clear	1.8	1.8	2.0	-40

Table B- 4: CH₄ concentration for Run 4 (07/08/2013 – Morning)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	14/08/2013	Clear	1.8	0.2	2.2	-40
Route 2	14/08/2013	Clear	1.8	1.8	2.0	-40
Route 3	14/08/2013	Clear	1.8	1.8	1.9	-41
Route 4	14/08/2013	Clear	1.9	1.8	1.9	-40
Route 5	14/08/2013	Clear	1.8	1.8	1.8	-40
Route 6	14/08/2013	Clear	1.8	1.7	1.8	-38
Route 7	14/08/2013	Clear	1.8	1.8	1.9	-40
Route 8	14/08/2013	Clear	1.8	1.8	1.9	-40
Route 9	14/08/2013	Clear	1.8	1.8	1.8	-40
Route 10	14/08/2013	Clear	1.9	1.8	2.1	-43
Route 11	14/08/2013	Clear	1.9	1.8	2.2	-40
Route 12	14/08/2013	Clear	1.8	1.8	1.8	-39
Route 13	14/08/2013	Clear	2.0	1.8	2.3	-42
Route 14	14/08/2013	Clear	2.0	1.9	2.1	-41
Route 15	14/08/2013	Clear	1.8	1.8	2.0	-40
Route 16	14/08/2013	Clear	1.9	1.8	2.3	-40
Route 17	14/08/2013	Clear	2.6	1.8	3.9	-46
Route 18	14/08/2013	Clear	1.9	1.8	1.9	-39

Table B- 5: CH₄ concentration for Run 5 (14/08/2013 – Afternoon)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	15/08/2013	Clear	1.8	1.8	1.8	-40
Route 2	15/08/2013	Clear	1.8	1.8	1.8	-42
Route 3	15/08/2013	Clear	1.8	1.8	1.8	-42
Route 4	15/08/2013	Clear	1.8	1.8	1.8	-44
Route 5	15/08/2013	Clear	1.8	1.8	1.8	-41
Route 6	15/08/2013	Clear	1.8	1.8	1.8	-42
Route 7	15/08/2013	Clear	1.8	1.8	1.8	-40
Route 8	15/08/2013	Clear	1.8	1.8	1.8	-40
Route 9	15/08/2013	Clear	1.8	1.8	1.8	-41
Route 10	15/08/2013	Clear	1.8	1.8	1.8	-38
Route 11	15/08/2013	Clear	1.8	1.8	1.8	-39
Route 12	15/08/2013	Clear	1.8	1.8	1.8	-41
Route 13	15/08/2013	Clear	1.8	1.8	1.8	-40
Route 14	15/08/2013	Clear	1.8	1.8	1.8	-37
Route 15	15/08/2013	Clear	1.8	1.8	1.8	-38
Route 16	15/08/2013	Clear	1.8	1.8	1.8	-39
Route 17	15/08/2013	Clear	1.8	1.8	1.8	-38
Route 18	15/08/2013	Clear	1.8	1.8	1.8	-38

Table B- 6: CH₄ concentration for Run 6 (15/08/2013 – Morning)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	19/08/2013	Clear	1.8	1.8	1.8	-40
Route 2	19/08/2013	Clear	1.8	1.8	1.8	-40
Route 3	19/08/2013	Clear	1.8	1.8	1.8	-40
Route 4	19/08/2013	Clear	1.8	1.8	1.8	-41
Route 5	19/08/2013	Clear	1.8	1.8	1.8	-42
Route 6	19/08/2013	Clear	1.8	1.7	1.8	-42
Route 7	19/08/2013	Clear	1.8	1.8	1.8	-41
Route 8	19/08/2013	Clear	1.8	1.8	1.8	-42
Route 9	19/08/2013	Clear	1.8	1.8	1.8	-42
Route 10	19/08/2013	Clear	1.8	1.8	1.8	-40
Route 11	19/08/2013	Clear	1.8	1.8	1.8	-41
Route 12	19/08/2013	Clear	1.8	1.8	1.8	-40
Route 13	19/08/2013	Clear	1.8	1.8	1.8	-38
Route 14	19/08/2013	Clear	1.8	1.8	1.8	-38
Route 15	19/08/2013	Clear	1.8	1.8	1.8	-40
Route 16	19/08/2013	Clear	1.8	1.8	1.8	-40
Route 17	19/08/2013	Clear	1.8	1.8	1.8	-39
Route 18	19/08/2013	Clear	1.8	1.8	1.8	-38

Table B- 7: CH₄ concentration for Run 7 (19/08/2013 – Afternoon)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	20/08/2013	Clear	1.8	1.8	2.8	-42
Route 2	20/08/2013	Clear	1.8	1.8	1.8	-42
Route 3	20/08/2013	Clear	1.8	1.8	1.8	-42
Route 4	20/08/2013	Clear	1.8	1.8	1.8	-38
Route 5	20/08/2013	Clear	1.8	1.8	1.8	-43
Route 6	20/08/2013	Clear	1.8	1.7	1.8	-41
Route 7	20/08/2013	Clear	1.8	1.8	1.8	-42
Route 8	20/08/2013	Clear	1.8	1.8	1.8	-43
Route 9	20/08/2013	Clear	1.8	1.8	1.8	-43
Route 10	20/08/2013	Clear	1.8	1.8	1.8	-41
Route 11	20/08/2013	Clear	1.8	1.8	1.8	-42
Route 12	20/08/2013	Clear	1.8	1.8	1.8	-42
Route 13	20/08/2013	Clear	1.8	1.8	2.1	-41
Route 14	20/08/2013	Clear	1.9	1.8	1.9	-41
Route 15	20/08/2013	Clear	1.8	1.8	1.9	-40
Route 16	20/08/2013	Clear	1.8	1.8	2.0	-39
Route 17	20/08/2013	Clear	1.9	1.8	1.9	-39
Route 18	20/08/2013	Clear	1.9	1.8	1.9	-40

Table B- 8: CH₄ concentration for Run 8 (20/08/2013 – Morning)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	21/01/2014	Clear	1.7	1.7	1.7	-41.4
Route 2	21/01/2014	Clear	1.7	1.7	1.7	-44.0
Route 3	21/01/2014	Clear	1.7	1.7	1.7	-43.2
Route 4	21/01/2014	Clear	1.7	1.7	1.7	-41.6
Route 5	21/01/2014	Clear	1.7	1.7	1.7	-44.0
Route 6	21/01/2014	Clear	1.7	1.7	1.7	-43.6
Route 7	21/01/2014	Clear	1.7	1.7	1.7	-39.2
Route 8	21/01/2014	Clear	1.7	1.7	1.7	-39.5
Route 9	21/01/2014	Clear	1.7	1.7	1.7	-39.1
Route 10	21/01/2014	Clear	1.8	1.7	1.7	-41.1
Route 11	21/01/2014	Clear	n/a	n/a	n/a	n/a
Route 12	21/01/2014	Clear	1.8	1.7	1.7	-41.9
Route 13	21/01/2014	Clear	1.8	1.7	1.7	-40.3
Route 14	21/01/2014	Clear	1.8	1.7	1.7	-39.5
Route 15	21/01/2014	Clear	1.7	1.7	1.7	-40.8
Route 16	21/01/2014	Clear	1.8	1.7	1.7	-41.3
Route 17	21/01/2014	Clear	1.7	1.7	1.7	-41.1
Route 18	21/01/2014	Clear	1.8	1.7	1.7	-40.0

Table B- 9: CH₄ concentration for Run 9 (21/01/2014 – Afternoon)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	22/01/2014	Clear	1.7	1.7	1.7	-42.9
Route 2	22/01/2014	Clear	1.7	1.7	1.7	-43.9
Route 3	22/01/2014	Clear	1.7	1.7	1.7	-40.9
Route 4	22/01/2014	Clear	1.7	1.7	1.7	-42.5
Route 5	22/01/2014	Clear	1.7	1.7	1.7	-41.3
Route 6	22/01/2014	Clear	1.7	1.7	1.7	-41.1
Route 7	22/01/2014	Clear	1.7	1.7	1.7	-42.5
Route 8	22/01/2014	Clear	1.8	1.7	1.7	-42.7
Route 9	22/01/2014	Clear	1.8	1.7	1.7	-40.9
Route 10	22/01/2014	Clear	1.7	1.7	1.7	-42.9
Route 11	22/01/2014	Clear	n/a	n/a	n/a	n/a
Route 12	22/01/2014	Clear	1.8	1.7	1.7	-42.0
Route 13	22/01/2014	Clear	1.7	1.7	1.7	-43.6
Route 14	22/01/2014	Clear	1.7	1.7	1.7	-42.2
Route 15	22/01/2014	Clear	1.8	1.7	1.7	-43.6
Route 16	22/01/2014	Clear	1.8	1.7	1.7	-44.4
Route 17	22/01/2014	Clear	1.8	1.7	1.7	-41.2
Route 18	22/01/2014	Clear	1.8	1.7	1.7	-43.1

Table B- 10: CH₄ concentration for Run 10 (22/01/2014 – Morning)

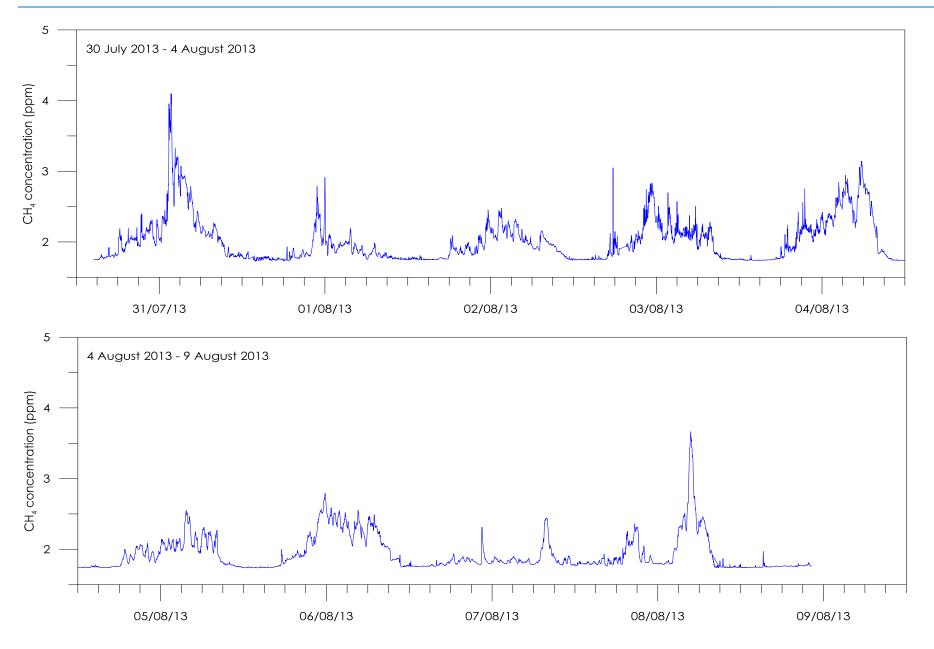

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	20/10/2014	Overcast	1.8	1.8	2.0	n/a
Route 2	20/10/2014	Clear	1.8	1.8	1.8	n/a
Route 3	20/10/2014	Overcast	1.8	1.8	1.8	n/a
Route 4	20/10/2014	Overcast	1.8	1.8	1.8	n/a
Route 5	20/10/2014	Overcast	1.8	1.8	1.8	n/a
Route 6	20/10/2014	Overcast	1.8	1.8	1.9	n/a
Route 7	20/10/2014	Overcast	1.8	1.8	1.8	n/a
Route 8	20/10/2014	Overcast	1.9	1.8	2.0	n/a
Route 9	20/10/2014	Windy	2.0	2.0	2.0	n/a
Route 10	20/10/2014	Windy	2.0	1.9	2.0	n/a
Route 11	20/10/2014	Windy	2.0	1.9	2.0	n/a
Route 12	20/10/2014	Rain	1.8	1.8	1.8	n/a
Route 13	20/10/2014	Clear	1.8	1.8	1.9	n/a
Route 14	20/10/2014	Clear	1.8	1.8	1.8	n/a
Route 15	20/10/2014	Clear	1.8	1.8	1.9	n/a
Route 16	20/10/2014	Clear	1.8	1.8	1.9	n/a
Route 17	20/10/2014	Clear	1.9	1.9	1.9	n/a
Route 18	20/10/2014	Clear	1.8	1.8	1.9	n/a

Table B- 11: CH₄ concentration for Run 11 (20/01/2014 – Morning)

Site number	Date	Weather conditions	Average CH₄ (ppm)	Minimum CH₄ (ppm)	Maximum CH₄ (ppm)	Average δ¹³C-CH₄ (‰)
Route 1	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 2	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 3	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 4	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 5	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 6	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 7	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 8	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 9	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 10	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 11	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 12	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 13	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 14	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 15	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 16	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 17	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a
Route 18	20/10/2014	Overcast / patchy rain	1.8	1.8	1.8	n/a

Table B- 12: CH₄ concentration for Run 12 (20/10/2014 – Afternoon)

Appendix C TIME SERIES OF THE METHANE CONCENTRATION DATA MEASURED AT THE STATIONARY MONITORING SITE

